Jarwal, B, Abbas S, Chou T-L, Vailyaveettil SM, Kumar A, Quadir S, Ho T-T, Wong DP, Chen L-C, Chen K-H.
2024.
Boosting Thermoelectric Performance in Nanocrystalline Ternary Skutterudite Thin Films through Metallic CoTe2 Integration, 2024. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces. 16(12):14770-14780.: American Chemical Society
Abstractn/a
Dhara, SK, Datta A, Lan ZH, Chen* KH, Wang YL, Shen CS, Chen LC, Hsu CW, Lin HM, Chen CC.
2004.
Blue shift of yellow band in self-ion beam irradiated GaN nanowires. Appl. Phys. Lett.. 84:3486-3488.
Dhara*, S, Chandra S, Magudapathy P, Kalavathi S, Panigrahi BK, Nair KGM, Sastry VS, Hsu CW, Wu CT, Chen KH, Chen LC.
2004.
Blue luminescence of Au nanoclusters embedded in silica matrix. J. Chem. Phys.. 121:12595-12599.
Lee, CP, Chen* WF, Billo T, Lin YG, Fu FY, Samireddi S, Lee CH, Hwang JS, Chen* LC, Chen* KH.
2016.
Beaded-stream-like CoSe2 nanoneedles array for efficient hydrogen evolution electrocatalysis. J. Mater. Chem. A . 4 :4553-4561.
Lee, C-P, Chen W-F, Billo T, Lin Y-G, Fu F-Y, Samireddi S, Lee C-H, Hwang J-S, Chen K-H, Chen L-C.
2016.
Beaded stream-like CoSe2 nanoneedle array for efficient hydrogen evolution electrocatalysis, 2016. Journal of Materials Chemistry A. 4(12):4553-4561.: The Royal Society of Chemistry
AbstractThe development of earth-abundant and efficient electrocatalysts for the hydrogen evolution reaction (HER) is one of the keys to success for future green energy systems using hydrogen fuel. Nanostructuring of electrocatalysts is a promising way to enhance their electrocatalytic performance in the HER. In this study, pure pyrite-type beaded stream-like cobalt diselenide (CoSe2) nanoneedles are directly formed on flexible titanium foils through treating a cobalt oxide (Co3O4) nanoneedle array template with selenium vapor. The beaded stream-like CoSe2 nanoneedle electrode can drive the HER at a current density of 20 mA cm−2 with a small overpotential of 125 mV. Moreover, the beaded stream-like CoSe2 nanoneedle electrode remains stable in an acidic electrolyte for 3000 cycles and continuously splits water over a period of 18 hours. The enhanced electrochemical activity is facilitated by the unique three-dimensional hierarchical structure, the highly accessible surface active sites, the improved charge transfer kinetics and the highly attractive force between water and the surface of the nanoneedles that exceeds the surface tension of water.
Shelke, AR, Wang H-T, Chiou J-W, Shown I, Sabbah A, Chen K-H, Teng S-A, Lin I-A, Lee C-C, Hsueh H-C, Liang Y-H, Du C-H, Yadav PL, Ray SC, Hsieh S-H, Pao C-W, Tsai H-M, Chen C-H, Chen K-H, Chen L-C, Pong W-F.
2022.
Bandgap Shrinkage and Charge Transfer in 2D Layered SnS2 Doped with V for Photocatalytic Efficiency Improvement. Small. n/a:2105076., Number n/a
AbstractAbstract Effects of electronic and atomic structures of V-doped 2D layered SnS2 are studied using X-ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X-ray absorption fine structure measurements at V K-edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X-ray absorption near-edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,β resonant inelastic X-ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo-excited electrons and effective carrier separation in layered SnS2. Additionally, valence-band photoemission spectra and S K-edge XANES indicate that the density of states near/at valence-band maximum is shifted to lower binding energy in V-doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first-principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V-doped SnS2.