Publications

Export 162 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Sabhapathy, P, Liao C-C, Chen W-F, Chou T-chin, Shown I, Sabbah A, Lin Y-G, Lee J-F, Tsai M-K, Chen K-H, Chen L-C.  2019.  Highly efficient nitrogen and carbon coordinated N–Co–C electrocatalysts on reduced graphene oxide derived from vitamin-B12 for the hydrogen evolution reaction, 2019. Journal of Materials Chemistry A. 7(12):7179-7185.: The Royal Society of Chemistry AbstractWebsite

Exploring electrocatalysts composed of earth-abundant elements for a highly efficient hydrogen evolution reaction (HER) is scientifically and technologically important for electrocatalytic water splitting. In this work, we report HER properties of acid treated pyrolyzed vitamin B12 supported on reduced graphene oxide (B12/G800A) that shows an extraordinarily enhanced catalytic activity with low overpotential (115 mV vs. RHE at 10 mA cm−2), which is better than that of most traditional nonprecious metal catalysts in acidic media. Stability tests through long-term potential cycles and at a constant current density confirm the exceptional durability of the catalyst. Notably, the B12/G800A catalyst exhibits extremely high turnover frequencies per cobalt site in acid, for example, 0.85 and 11.46 s−1 at overpotentials of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Moreover, it has been conjectured that the covalency of Co–C and Co–N bonds affects HER activities by comparing the extended X-ray absorption fine structure (EXAFS) spectra of the B12/G800A. High-temperature treatment can modify the Co-corrin structure of B12 to form Co–C bonds along with Co–N, which broadens the band of cobalt, essentially lowering the d-band center from its Fermi level. The lower d-band center leads to a moderate hydrogen binding energy, which is favorable for hydrogen adsorption and desorption.

Pathak, A, Shen J-W, Usman M, Wei L-F, Mendiratta S, Chang Y-S, Sainbileg B, Ngue C-M, Chen R-S, Hayashi M, Luo T-T, Chen F-R, Chen K-H, Tseng T-W, Chen L-C, Lu K-L.  2019.  Integration of a (–Cu–S–)n plane in a metal–organic framework affords high electrical conductivity, 2019. 10(1):1721. AbstractWebsite

Designing highly conducting metal–organic frameworks (MOFs) is currently a subject of great interest for their potential applications in diverse areas encompassing energy storage and generation. Herein, a strategic design in which a metal–sulfur plane is integrated within a MOF to achieve high electrical conductivity, is successfully demonstrated. The MOF {[Cu2(6-Hmna)(6-mn)]·NH4}n (1, 6-Hmna = 6-mercaptonicotinic acid, 6-mn = 6-mercaptonicotinate), consisting of a two dimensional (–Cu–S–)n plane, is synthesized from the reaction of Cu(NO3)2, and 6,6′-dithiodinicotinic acid via the in situ cleavage of an S–S bond under hydrothermal conditions. A single crystal of the MOF is found to have a low activation energy (6 meV), small bandgap (1.34 eV) and a highest electrical conductivity (10.96 S cm−1) among MOFs for single crystal measurements. This approach provides an ideal roadmap for producing highly conductive MOFs with great potential for applications in batteries, thermoelectric, supercapacitors and related areas.

Fu, F-Y, Shown I, Li C-S, Raghunath P, Lin T-Y, Billo T, Wu H-L, Wu C-I, Chung P-W, Lin M-C, Chen L-C, Chen K-H.  2019.  KSCN-induced Interfacial Dipole in Black TiO2 for Enhanced Photocatalytic CO2 Reduction, 2019. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces. 11(28):25186-25194.: American Chemical Society AbstractWebsite
n/a
Das, S, Valiyaveettil SM, Chen K-H, Suwas S, Mallik RC.  2019.  Thermoelectric properties of Mn doped BiCuSeO, 2019. Materials Research Express. 6(8):086305.: IOP Publishing AbstractWebsite

BiCuSeO is a promising thermoelectric material having earth-abundant non-toxic constituents and favourable thermoelectric properties like ultra-low thermal conductivity. In this study, Mn+2 has been introduced at the Bi+3 site to increase hole concentration as well as Seebeck coefficient, through aliovalent doping and magnetic impurity incorporation respectively. Samples were prepared through two-step solid state synthesis with the composition Bi1-xMnxCuSeO (x = 0.0, 0.04, 0.06, 0.08, 0.10 and 0.12). X-ray diffraction patterns confirmed the tetragonal (space group: P4/nmm) crystal structure of BiCuSeO as well as phase purity of the samples. The Seebeck coefficient and electrical resistivity had a decreasing trend with increasing doping fraction owing to the generation of charge carriers. The samples with x = 0.04 and 0.06 showed temperature independent Seebeck coefficient above 523 K, which is a signature of small polaron hopping. While the Seebeck coefficient of the samples with x = 0.08, 0.10 and 0.12 increased above 523 K due to the combination of localized and extended states. The thermal conductivity was dominated by the lattice part of the thermal conductivity. As a result of moderate Seebeck coefficient and low electrical resistivity, the highest power factor of 0.284 mW m−1-K2 was obtained for the Bi0.92Mn0.08CuSeO at 773 K, leading to a maximum zT of 0.4 at 773.

2018
Shown, I, Samireddi S, Chang Y-C, Putikam R, Chang P-H, Sabbah A, Fu F-Y, Chen W-F, Wu C-I, Yu T-Y, Chung P-W, Lin MC, Chen L-C, Chen K-H.  2018.  Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light, 2018. Nature Communications. 9(1):169. AbstractWebsite

Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an l-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS2 (SnS2-C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS2 lattice, resulting in different photophysical properties as compared with undoped SnS2. This SnS2-C photocatalyst significantly enhances the CO2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS2-C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO2 reduction under visible light, where the in situ carbon-doped SnS2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.

K.P.O., M, Shown I, Chen L-C, Chen K-H, Tai Y.  2018.  Flexible sensor for dopamine detection fabricated by the direct growth of α-Fe2O3 nanoparticles on carbon cloth, 2018. Applied Surface Science. 427:387-395. AbstractWebsite

AbstractPorous α-Fe2O3 nanoparticles are directly grown on acid treated carbon cloth (ACC) using a simple hydrothermal method (denoted as ACC-α-Fe2O3) for employment as a flexible and wearable electrochemical electrode. The catalytic activity of ACC-α-Fe2O3 allowing the detection of dopamine (DA) is systematically investigated. The results showed that the ACC-α-Fe2O3 electrode exhibits impressive electrochemical sensitivity, stability and selectivity for the detection of DA. The detection limit determined with the amperometric method appears to be around 50nM with a linear range of 0.074–113μM. The impressive DA sensing ability of the as prepared ACC-α-Fe2O3 electrode is due to the good electrochemical behavior and high electroactive surface area (19.96cm2) of α-Fe2O3 nanoparticles anchored on the highly conductive ACC. It is worth noting that such remarkable sensing properties can be maintained even when the electrode is in a folded configuration.

Rajeev Gandhi, J, Nehru R, Chen S-M, Sankar R, Bayikadi KS, Sureshkumar P, Chen K-H, Chen L-C.  2018.  Influence of GeP precipitates on the thermoelectric properties of P-type GeTe and Ge0.9−xPxSb0.1Te compounds, 2018. CrystEngComm. 20(41):6449-6457.: The Royal Society of Chemistry AbstractWebsite

Germanium telluride (GeTe) is a very well known IV–VI group semiconducting material with the advantageous property of showing metallic conduction, which materializes from its superior carrier concentration (n) (high number of Ge vacancies). A systematic investigation into the thermoelectric properties (TEP) of GeTe was reported by way of carrier concentration (n) engineering. The present investigation focuses on studying the effects of doping (antimony – Sb) and co-doping (phosphorus – P) on the TEP of GeTe. In order to understand the system, we have prepared p-type GeTe and Ge0.9−xPxSb0.1Te (x = 0, 0.01, 0.03, or 0.05) samples via a non-equilibrium solid state melt quenching (MQ) process, followed by hot press consolidation. Temperature dependent synchrotron X-ray diffraction studies reveal a phase transition from rhombohedral to simple cubic in the Ge0.9−xPxSb0.1Te system at 573 K, which is clearly reflected in the TEP. Further high resolution transmission electron microscopy (HRTEM) studies reveal the pseudo-cubic nature of the sample. However, powder X-ray diffraction (PXRD) and field emission scanning electron microscopy (FESEM) images and energy dispersive X-ray spectroscopy (EDX) studies confirm the presence of germanium phosphide (GeP) in all P-doped samples. The presence of a secondary phase and point defects (Sb & P) enhanced the additional scattering effects in the system, which influenced the Seebeck coefficient and thermal conductivity of GeTe. A significant enhancement in the Seebeck coefficient (S) to ∼225 μV K−1 and a drastic reduction in thermal conductivity (κ) to ∼1.2 W mK−1 effectively enhanced the figure-of-merit (ZT) to ∼1.72 at 773 K for Ge0.87P0.03Sb0.1Te, which is a ∼3 fold increase for GeTe. Finally, P co-doped Ge0.9Sb0.1Te demonstrates an enhancement in ZT, making it a good candidate material for power generation applications.

Roy, PK, Haider G, Lin H-I, Liao Y-M, Lu C-H, Chen K-H, Chen L-C, Shih W-H, Liang C-T, Chen Y-F.  2018.  Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network, 2018. Advanced Optical MaterialsAdvanced Optical Materials. 6(16):1800382.: John Wiley & Sons, Ltd AbstractWebsite

Abstract Application of lasers is omnipresent in modern-day technology. However, preparation of a lasing device usually requires sophisticated design of the materials and is costly, which may limit the suitable choice of materials and the lasing wavelengths. Random lasers, on the other hand, can circumvent the aforementioned shortcomings with simpler fabrication process, lower processing cost, material flexibility for any lasing wavelengths with lower lasing threshold, providing a roadmap for the design of super-bright lighting, displays, Li-Fi, etc. In this work, ultralow-threshold random laser action from semiconductor nanoparticles assisted by a highly porous vertical-graphene-nanowalls (GNWs) network is demonstrated. The GNWs embedded by the nanomaterials produce a suitable cavity for trapping the optical photons with semiconductor nanomaterials acting as the gain medium. The observed laser action shows ultralow values of threshold energy density ≈10 nJ cm?2 due to the strong photon trapping within the GNWs. The threshold pump fluence can be further lowered to ≈1 nJ cm?2 by coating Ag/SiO2 upon the GNWs due to the combined effect of photon trapping and strong plasmonic enhancement. In view of the growing demand of functional materials and novel technologies, this work provides an important step toward realization of high-performance optoelectronic devices.

Billo, T, Fu F-Y, Raghunath P, Shown I, Chen W-F, Lien H-T, Shen T-H, Lee J-F, Chan T-S, Huang K-Y, Wu C-I, Lin MC, Hwang J-S, Lee C-H, Chen L-C, Chen K-H.  2018.  Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction. Small. 14:1702928–n/a., Number 2 AbstractWebsite

One of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. In this contribution, a combined experimental and computational study on Ni-nanocluster loaded black TiO2 (Ni/TiO2[Vo]) with built-in dual active sites for selective photocatalytic CO2 conversion is reported. The findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO2 binding sites with the lowest activation energy (0.08 eV), (2) highly reactive sites, (3) a fast electron transfer pathway, and (4) enhanced light harvesting by lowering the bandgap. The Ni/TiO2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO2 (P-25). An insight into the mechanisms of interfacial charge transfer and product formation is explored.

Chiu, J-M, Chou T-chin, Wong DP, Lin Y-R, Shen C-A, Hy S, Hwang B-J, Tai Y, Wu H-L, Chen L-C, Chen K-H.  2018.  A synergistic “cascade” effect in copper zinc tin sulfide nanowalls for highly stable and efficient lithium ion storage. Nano Energy. 44:438-446. AbstractWebsite
n/a
2017
Fang, S-L, Chou T-chin, Samireddi S, Chen K-H, Chen L-C, Chen W-F.  2017.  Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide, 2017/03/01. Royal Society open science. 4(3):161016161016-161016.: The Royal Society Publishing AbstractWebsite

Production of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In this study, we synthesize and study a series of catalysts based on hybrids of CoP and MoP with different Co/Mo ratio. The HER activity shows a volcano shape and reaches a maximum for Co/Mo = 1. Tafel analysis indicates a change in the dominating step of Volmer-Hyrovský mechanism. Interestingly, X-ray diffraction patterns confirmed a major ternary interstitial hexagonal CoMoP(2) crystal phase is formed which enhances the electrochemical activity.

Ebrahimi, M, Samadi M, Yousefzadeh S, Soltani M, Rahimi A, Chou T-chin, Chen L-C, Chen K-H, Moshfegh AZ.  2017.  Improved Solar-Driven Photocatalytic Activity of Hybrid Graphene Quantum Dots/ZnO Nanowires: A Direct Z-Scheme Mechanism, 2017. ACS Sustainable Chemistry & EngineeringACS Sustainable Chemistry & Engineering. 5(1):367-375.: American Chemical Society AbstractWebsite
n/a
Wei-ChaoChen, Tunuguntla V, Min-HsuehChiu, Lian-JiunLi, Shown I, Lee C-H, Hwang J-S, Chen L-C, Chen K-H.  2017.  Co-solvent effect on microwave-assisted Cu2ZnSnS4 nanoparticles synthesis for thin film solar cell. Solar Energy Materials and Solar Cells. 161:416-423.
Ciao-WeiYang, Chin-ChangChen, Chen K-H, SoofinCheng.  2017.  Effect of pore-directing agents in SBA-15 nanoparticles on the performance of Nafion®/SBA-15n composite membranes for DMFC. Journal of Membrane Science. 526:106-117.
Chiu, J-M, Chen E-M, Lee C-P, Shown I, Tunuguntla V, Chou J-S, Chen L-C, Chen K-H, Tai Y.  2017.  Geogrid-Inspired Nanostructure to Reinforce a CuxZnySnzS Nanowall Electrode for High-Stability Electrochemical Energy Conversion Devices. Advanced Energy Materials. 7(12):1602210.
Samireddi, S, Shown I, Shen T-H, Huang H-C, Wong K-T, Chen L-C, Chen K-H.  2017.  Hybrid bimetallic-N4 electrocatalyst derived from a pyrolyzed ferrocene–Co-corrole complex for oxygen reduction reaction. Journal of Materials Chemistry A. 5:9279-9286.
Qorbani, M, Chou T-chin, Lee Y-H, Samireddi S, Naseri N, Ganguly A, Esfandiar A, Wang C-H, Chen L-C, Chen K-H, Moshfegh AZ.  2017.  Multi-porous Co3O4 nanoflakes @ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors. Journal of Materials Chemistry A. 5:12569-12577.
2016
Lee, C-P, Chen W-F, Billo T, Lin Y-G, Fu F-Y, Samireddi S, Lee C-H, Hwang J-S, Chen K-H, Chen L-C.  2016.  Beaded stream-like CoSe2 nanoneedle array for efficient hydrogen evolution electrocatalysis, 2016. Journal of Materials Chemistry A. 4(12):4553-4561.: The Royal Society of Chemistry AbstractWebsite

The development of earth-abundant and efficient electrocatalysts for the hydrogen evolution reaction (HER) is one of the keys to success for future green energy systems using hydrogen fuel. Nanostructuring of electrocatalysts is a promising way to enhance their electrocatalytic performance in the HER. In this study, pure pyrite-type beaded stream-like cobalt diselenide (CoSe2) nanoneedles are directly formed on flexible titanium foils through treating a cobalt oxide (Co3O4) nanoneedle array template with selenium vapor. The beaded stream-like CoSe2 nanoneedle electrode can drive the HER at a current density of 20 mA cm−2 with a small overpotential of 125 mV. Moreover, the beaded stream-like CoSe2 nanoneedle electrode remains stable in an acidic electrolyte for 3000 cycles and continuously splits water over a period of 18 hours. The enhanced electrochemical activity is facilitated by the unique three-dimensional hierarchical structure, the highly accessible surface active sites, the improved charge transfer kinetics and the highly attractive force between water and the surface of the nanoneedles that exceeds the surface tension of water.

Tran Nguyen, NH, Nguyen TH, Liu Y-ren, Aminzare M, Pham ATT, Cho S, Wong DP, Chen K-H, Seetawan T, Pham NK, Ta HKT, Tran VC, Phan TB.  2016.  Thermoelectric Properties of Indium and Gallium Dually Doped ZnO Thin Films, 2016. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces. 8(49):33916-33923.: American Chemical Society AbstractWebsite
n/a
Lee, CP, Chen* WF, Billo T, Lin YG, Fu FY, Samireddi S, Lee CH, Hwang JS, Chen* LC, Chen* KH.  2016.  Beaded-stream-like CoSe2 nanoneedles array for efficient hydrogen evolution electrocatalysis. J. Mater. Chem. A . 4 :4553-4561.
Yesi, Y, Shown I, Ganguly A, Ngo TT, Chen LC, Chen KH.  2016.  Directly-grown hierarchical carbon nanotube@polypyrrole core-shell hybrid for high-performance flexible supercapacitors. ChemSusChem . 9:370-378.
Tunuguntla, V, Chen WC, Newman TD, Hsieh MC, Lu SH, Su C, Chen LC, Chen KH.  2016.  Enhancement of charge collection at shorter wave lengths from alternative CdS deposition conditions for high efficiency CZTSSe solar cells. Solar Energy Materials & Solar Cells . 149:49-54.
2015
Shown, I, Ganguly A, Chen L-C, Chen K-H.  2015.  Conducting polymer-based flexible supercapacitor, 2015. Energy Science & EngineeringEnergy Science & Engineering. 3(1):2-26.: John Wiley & Sons, Ltd AbstractWebsite

Abstract Flexible supercapacitors, a state-of-the-art material, have emerged with the potential to enable major advances in for cutting-edge electronic applications. Flexible supercapacitors are governed by the fundamentals standard for the conventional capacitors but provide high flexibility, high charge storage and low resistance of electro active materials to achieve high capacitance performance. Conducting polymers (CPs) are among the most potential pseudocapacitor materials for the foundation of flexible supercapacitors, motivating the existing energy storage devices toward the future advanced flexible electronic applications due to their high redox active-specific capacitance and inherent elastic polymeric nature. This review focuses on different types of CPs-based supercapacitor, the relevant fabrication methods and designing concepts. It describes recent developments and remaining challenges in this field, and its impact on the future direction of flexible supercapacitor materials and relevant device fabrications.

Sankar, R, Wong DP, Chi CS, Chien WL, Hwang JS, Chou FC, Chen LC, Chen KH.  2015.  Enhanced thermoelectric performance of GeTe-rich germanium antimony tellurides through the control of composition and structure. CrystEngComm, . 17:3440.
Chen, WC, Lien HT, Cheng TW, Su C, Chong CW, Ganguly A, Chen KH, Chen* LC.  2015.  Side Group of Poly(3-alkylthiophene)s Controlled Dispersion of Single-Walled Carbon Nanotubes for Transparent Conducting Film. ACS Appl. Mater. & Inter. . 7:4616.