Phase diagram of graphene nanoribbons and band-gap bifurcation of Dirac fermions under quantum confinement

Citation:
Sun, YY, Ruan WY, Gao XF, Bang J, Kim YH, Lee K, West D, Liu X, Chan TL, Chou MY, Zhang SB.  2012.  Phase diagram of graphene nanoribbons and band-gap bifurcation of Dirac fermions under quantum confinement, May. Physical Review B. 85:5., Number 19

Abstract:

A p-T phase diagram of graphene nanoribbons (GNRs) terminated by hydrogen atoms is established based on first-principles calculations, where the stable phase at standard conditions (25 degrees C and 1 bar) is found to be a zigzag GNR (zzGNR). The stability of this new GNR is understood based on an electron-counting model, which predicts semiconducting nonmagnetic zzGNRs. Quantum confinement of Dirac fermions in the stable zzGNRs is found to be qualitatively different from that in ordinary semiconductors. Bifurcation of the band gap is predicted to take place, leading to the formation of polymorphs with distinct band gaps but equal thermodynamic stability. A tight-binding model analysis reveals the role of edge symmetry on the band-gap bifurcation.

Notes:

ISI Document Delivery No.: 950KSTimes Cited: 1Cited Reference Count: 34Cited References: Bai JW, 2009, NANO LETT, V9, P2083, DOI 10.1021/nl900531n Barone V, 2006, NANO LETT, V6, P2748, DOI 10.1021/nl0617033 Cai JM, 2010, NATURE, V466, P470, DOI 10.1038/nature09211 Elias AL, 2010, NANO LETT, V10, P366, DOI 10.1021/nl901631z Gallagher P, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.115409 Geim AK, 2007, NAT MATER, V6, P183, DOI 10.1038/nmat1849 Girit CO, 2009, SCIENCE, V323, P1705, DOI 10.1126/science.1166999 Han MY, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.056801 Han MY, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.206805 Hou ZF, 2011, J PHYS CHEM C, V115, P5392, DOI 10.1021/jp110879d Jia XT, 2009, SCIENCE, V323, P1701, DOI 10.1126/science.1166862 Jiao LY, 2010, NAT NANOTECHNOL, V5, P321, DOI [10.1038/nnano.2010.54, 10.1038/NNANO.2010.54] Jiao LY, 2009, NATURE, V458, P877, DOI 10.1038/nature07919 Kosynkin DV, 2009, NATURE, V458, P872, DOI 10.1038/nature07872 Krauss B, 2010, NANO LETT, V10, P4544, DOI 10.1021/nl102526s Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0 Kresse G, 1999, PHYS REV B, V59, P1758, DOI 10.1103/PhysRevB.59.1758 Li XL, 2008, SCIENCE, V319, P1229, DOI 10.1126/science.1150878 Liao L, 2010, NANO LETT, V10, P1917, DOI 10.1021/nl100840z Martin I, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.235132 Nakada K, 1996, PHYS REV B, V54, P17954, DOI 10.1103/PhysRevB.54.17954 Novoselov KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 Querlioz D, 2008, APPL PHYS LETT, V92, DOI 10.1063/1.2838354 Reuter K, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.035406 Ritter KA, 2009, NAT MATER, V8, P235, DOI [10.1038/nmat2378, 10.1038/NMAT2378] Son YW, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.216803 Stampfer C, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.056403 Wakabayashi K, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.036601 Wang XR, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.206803 Warner JH, 2009, NAT NANOTECHNOL, V4, P500, DOI [10.1038/nnano.2009.194, 10.1038/NNANO.2009.194] Wassmann T, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.096402 Yang L, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.186801 Yoon Y, 2007, APPL PHYS LETT, V91, DOI 10.1063/1.2769764Sun, Y. Y. Ruan, W. Y. Gao, Xingfa Bang, Junhyeok Kim, Yong-Hyun Lee, Kyuho West, D. Liu, Xin Chan, T-L. Chou, M. Y. Zhang, S. B.Kim, Yong-Hyun/C-2045-2011; Lee, Kyuho/B-9370-2008; West, Damien/F-8616-2012; Liu, Xin/G-3303-2012; Chou, Mei-Yin/D-3898-2012; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013Lee, Kyuho/0000-0001-9325-3717; Liu, Xin/0000-0002-4422-4108;US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DEFG02-97ER45632]; NSF [DMR-1104994]; DOE [DE-SC0002623]; China MOST [2012CB934001]; NERSC under US DOE [DE-AC02-05CH11231]W.Y.R. and M.Y.C. acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award No. DEFG02-97ER45632. The work at RPI was supported by the NSF (Grant No. DMR-1104994) and the DOE (Grant No. DE-SC0002623). X. G. was partially supported by the China MOST 973 program (Grant No. 2012CB934001). The supercomputer time was provided by NERSC under US DOE Grant No. DE-AC02-05CH11231 and CCNI at RPI.1Amer physical socCollege pk

Website