Publications

Export 1 results:
Sort by: [ Author  (Asc)] Title Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Alford, JA, Chou MY, Chang EK, Louie SG.  2003.  First-principles studies of quasiparticle band structures of cubic YH3 and LaH3, Mar. Physical Review B. 67:7., Number 12 AbstractWebsite

Quasiparticle band structures for the cubic trihydrides YH3 and LaH3 have been calculated by evaluating the self-energy in the GW approximation using ab initio pseudopotentials and plane waves. These are the prototype metal hydrides that exhibit switchable optical properties. For both materials, the local-density approximation (LDA) yields semimetallic energy bands with a direct overlap of about 1 eV. We find the self-energy correction to the LDA energies opens a gap at Gamma of 0.8-0.9 eV for LaH3 and 0.2-0.3 eV for YH3, where the latter is in sharp contrast to a previous study using linear-muffin-tin orbitals. The quasiparticle band gaps are analyzed as a function of an initial shift in the LDA bands used to evaluate the random-phase approximation screening in constructing the self-energy. We also make a comparison of results obtained by using two different pseudopotentials, each designed to better approximate exchange and correlation between the semicore states and valence states of Y and La.