First-principles studies of quasiparticle band structures of cubic YH3 and LaH3

Citation:
Alford, JA, Chou MY, Chang EK, Louie SG.  2003.  First-principles studies of quasiparticle band structures of cubic YH3 and LaH3, Mar. Physical Review B. 67:7., Number 12

Abstract:

Quasiparticle band structures for the cubic trihydrides YH3 and LaH3 have been calculated by evaluating the self-energy in the GW approximation using ab initio pseudopotentials and plane waves. These are the prototype metal hydrides that exhibit switchable optical properties. For both materials, the local-density approximation (LDA) yields semimetallic energy bands with a direct overlap of about 1 eV. We find the self-energy correction to the LDA energies opens a gap at Gamma of 0.8-0.9 eV for LaH3 and 0.2-0.3 eV for YH3, where the latter is in sharp contrast to a previous study using linear-muffin-tin orbitals. The quasiparticle band gaps are analyzed as a function of an initial shift in the LDA bands used to evaluate the random-phase approximation screening in constructing the self-energy. We also make a comparison of results obtained by using two different pseudopotentials, each designed to better approximate exchange and correlation between the semicore states and valence states of Y and La.

Notes:

ISI Document Delivery No.: 666CLTimes Cited: 15Cited Reference Count: 34Cited References: Usuda M, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.125101 van Gelderen P, 2002, PHYS REV B, V66 Chang EK, 2001, PHYS REV B, V64 van der Molen SJ, 2001, PHYS REV B, V63 van Gogh ATM, 2001, PHYS REV B, V63, part. no., DOI 10.1103/PhysRevB.63.195105 Kierey H, 2001, PHYS REV B, V63 van Gelderen P, 2000, PHYS REV LETT, V85, P2989, DOI 10.1103/PhysRevLett.85.2989 Miyake T, 2000, PHYS REV B, V61, P16491, DOI 10.1103/PhysRevB.61.16491 Aulbur WG, 2000, SOLID STATE PHYS, V54, P1 OSHIKIRI M, 2000, J PHYS SOC JPN, V69, P2123 Ng KK, 1999, PHYS REV B, V59, P5398, DOI 10.1103/PhysRevB.59.5398 van der Sluis P, 1998, APPL PHYS LETT, V73, P1826, DOI 10.1063/1.122295 Rohlfing M, 1998, PHYS REV B, V57, P6485, DOI 10.1103/PhysRevB.57.6485 Eder R, 1997, PHYS REV B, V56, P10115, DOI 10.1103/PhysRevB.56.10115 Shirley EL, 1997, PHYS REV B, V56, P6648, DOI 10.1103/PhysRevB.56.6648 vanderSluis P, 1997, APPL PHYS LETT, V70, P3356, DOI 10.1063/1.119169 Kelly PJ, 1997, PHYS REV LETT, V78, P1315, DOI 10.1103/PhysRevLett.78.1315 Huiberts JN, 1996, NATURE, V380, P231, DOI 10.1038/380231a0 ROHLFING M, 1995, PHYS REV LETT, V75, P3489, DOI 10.1103/PhysRevLett.75.3489 WANG Y, 1994, PHYS REV B, V49, P10731, DOI 10.1103/PhysRevB.49.10731 WANG Y, 1993, PHYS REV LETT, V71, P1226, DOI 10.1103/PhysRevLett.71.1226 DEKKER JP, 1993, J PHYS-CONDENS MAT, V5, P4805, DOI 10.1088/0953-8984/5/27/025 WANG Y, 1991, PHYS REV B, V44, P10339, DOI 10.1103/PhysRevB.44.10339 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 NORTHRUP JE, 1989, PHYS REV B, V39, P8198, DOI 10.1103/PhysRevB.39.8198 HYBERTSEN MS, 1986, PHYS REV B, V34, P5390, DOI 10.1103/PhysRevB.34.5390 PERDEW JP, 1983, PHYS REV LETT, V51, P1884, DOI 10.1103/PhysRevLett.51.1884 SHAM LJ, 1983, PHYS REV LETT, V51, P1888, DOI 10.1103/PhysRevLett.51.1888 LOUIE SG, 1982, PHYS REV B, V26, P1738, DOI 10.1103/PhysRevB.26.1738 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 HEDIN L, 1969, SOLID STATE PHYS, V23, P1 HEDIN L, 1965, PHYS REV, V139, pA796, DOI 10.1103/PhysRev.139.A796 WISER N, 1963, PHYS REV, V129, P62, DOI 10.1103/PhysRev.129.62 ADLER SL, 1962, PHYS REV, V126, P413, DOI 10.1103/PhysRev.126.413Alford, JA Chou, MY Chang, EK Louie, SGAMERICAN PHYSICAL SOCCOLLEGE PK

Website