Publications

Export 466 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Z
Z. H. Shen, Hess* P, Huang JP, Lin YC, Chen KH.  2006.  Influence of oxygen on the elastic properties of nanocrystalline diamond films studied by laser-induced surface acoustic waves. Ultrasonics. 44:e1229-e1232.
Y
Yusuf Fakhri, M, Lai W-C, Jarwal B, Hsieh W-Z, Tseng Y-H, Ho T-T, Bayikadi KS, Valiyaveettil SM, Ganesan P, Chiang C-Y, Chen L-C, Chen K-H.  2025.  Enhanced low-temperature thermoelectric properties in textured polycrystalline SnS Co-doped with Na and Ag, 2025. 1018:179124. AbstractWebsite

Tin monosulfide (SnS), an affordable group IV-VI binary compound, has emerged as a promising semiconductor due to its abundance and low toxicity. The exceptionally low thermal conductivity from the strong lattice anharmonicity makes this material suitable for thermoelectric applications. However, the poor thermoelectric properties of polycrystalline, compared to its single-crystal counterpart, remain the challenge. Furthermore, the anisotropic performance based on the sintering process complicates the preparation of this polycrystalline material. In this study, we successfully improved the electrical transport properties of polycrystalline SnS by employing the in-plane transport properties with texture modulation from hot-pressing at 973 K. This enhancement led to the high electrical conductivity of ≈ 55 S cm−1 in polycrystalline Na-doped SnS observed at room temperature. Additionally, the hole carrier concentration of p-type SnS was further optimized by co-doping of Na and Ag. Our co-doped SnS exhibits a relatively high power factor peak of ≈ 4.49 μWcm−1K−2 at 473 K. With the significant improvement of the electrical conductivities, the thermal conductivities remained unaltered. This work successfully demonstrated a substantial enhancement by ∼66.7 % in the thermoelectric figure of merit (zT) from 0.18 to 0.3 at a relatively low temperature of 573 K in polycrystalline SnS via the microstructural modification from texturing and the optimization of carrier concentration from co-doping.

Yesi, Y, Shown I, Ganguly A, Ngo TT, Chen LC, Chen KH.  2016.  Directly-grown hierarchical carbon nanotube@polypyrrole core-shell hybrid for high-performance flexible supercapacitors. ChemSusChem . 9:370-378.
Yen, HF, Horng YY, Hu MS, Yang WH, Tai Y, Chen KH, Chen LC.  2015.  Vertically aligned epitaxial graphene nanowalls with dominated nitrogen-doping for superior supercapacitors. Carbon . 82:124-134.
Yeh, CL, Jan CJ, Chiou JW, Pong* WF, Tsai MH, Chang YK, Chen YY, Lee JF, Tseng PK, Wei SL, Wen CY, Chen LC, Chen KH.  2001.  Electronic structure of the Fe-layer catalyzed carbon nanotubes studies by X-ray-absorption spectroscopy. Appl. Phys. Lett.. 79:3179-3181.
Yang, J, Wang C-Y, Wang C-C, Chen K-H, Mou C-Y, Wu H-L.  2020.  Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes, 2020. Journal of Materials Chemistry A. 8(10):5095-5104.: The Royal Society of Chemistry AbstractWebsite

Lithium metal anodes form a dendritic structure after cycling which causes an internal short circuit in flammable electrolytes and results in battery fires. Today's separators are insufficient for suppressing the formation of lithium dendrites. Herein, we report on the use of mesoporous silica thin films (MSTFs) with perpendicular nanochannels (pore size ∼5 nm) stacking on an anodic aluminum oxide (AAO) membrane as the MSTF⊥AAO separator for advancing Li metal batteries. The nanoporous MSTF⊥AAO separator with novel inorganic structures shows ultra-long term stability of Li plating/stripping in Li–Li cells at an ultra-high current density and capacity (10 mA cm−2 and 5 mA h cm−2). A significant improvement over the state-of-the-art separator is evaluated based on three performance indicators, e.g. cycle life, current density and capacity. In Li–Cu cells, the MSTF⊥AAO separator shows a coulombic efficiency of >99.9% at a current density of 10 mA cm−2 for more than 250 h of cycling. The separator gives improved rate capability in Li–LiFePO4 (LFP) batteries. The excellent performance of the MSTF⊥AAO separator is due to good wetting of electrolytes, straight nanopores with negative charges, uniform Li deposition and blocking the finest dendrite.

Yang, HC, Kuo PF, Lin TY, Chen YF, Chen KH, Chen LC, Chyi JI.  2000.  Mechanism of luminescence in InGaN multiple quantum wells. Appl. Phys. Lett.. 76:3712-3714.
Yang, FH, Yang* YJ, Hwang JH, Chen KH, Li TH, Hwa LG, Chen LC.  2002.  High growth rate deposition of oriented InN films. Thin Solid Films. 405:194-197.
Yang, MD, Hu CH, Shen* JL, Lan SM, Huang PJ, Chi GC, Chen KH, Chen LC, Lin YT.  2008.  Hot Photoluminescence in Gamma In2Se3 Nanorods. Nanoscale Res. Lett.. 3:427.
Yang, J, Liu TW, Hsu CW, Chen LC, Chen KH, Chen* CC.  2006.  Controlled growth of aluminium nitride nanorod arrays via chemical vapour deposition. Nanotechnology. 17:S321-326.
Yang, FH, Hwang JS, Yang* YJ, Chen KH, Wang JH.  2002.  Growth of high-quality epitaxial InN film with high-speed reactant gas by OMVPE. Jpn. J. Appl. Phys.. 41:L1321-1324.
Yang, M-J, Yusuf Fakhri M, Liao C-N, Chen K-H.  2022.  Synthesis and characterization of Ge-Ag-Sb-S-Se-Te high-entropy thermoelectric alloys, 2022. 311:131617. AbstractWebsite

Multielement alloying is an appealing approach for suppressing thermal conductivity of thermoelectric materials. In this study, we synthesized GeTe-based high-entropy alloys with notable (S, Se) substitution at Te sites and (Ag, Sb) at Ge sites. The Ge0.82Ag0.08Sb0.1S0.5Se0.1Te0.4 exhibits an extremely low thermal conductivity of ∼ 0.66 W/m⋅K and a high Seebeck coefficient (>250 μV/K) over a temperature range of 150 – 400 °C. The influence of lattice distortion on phase transformation and transport properties of Ge0.9-2xAg2xSb0.1S0.5Se0.1Te0.4 (x = 0 – 0.06) was investigated.

Yang, CC, Cheng CH, Chen TH, Lin YH, Chi YC, Tseng WH, Chang PH, Chen CY, Chen KH, Chen LC, Wu CI, Lin GR.  2018.  Ge-Rich SiGe Mode-Locker for Erbium-Doped Fiber Lasers, May-June 2018. IEEE Journal of Selected Topics in Quantum Electronics. 24(3):1-10. Abstract

n/a

Yang, TH, Chen CH, Chatterjee A, Li HY, Lo JT, Wu CT, Chen KH, Chen* LC.  2003.  Controlled growth of silicon carbide nanorods by rapid thermal process and their field emission properties. Chem. Phys. Lett.. 379:155-161.
Y.K.Lin, Su YH, Huang YH, Hsu CH, Lin YG, Hsu YK, Chen LC, Chen KH.  2009.  Efficient hydrogen production using Cu-based catalysts prepared via homogeneous precipitation. J. Mater. Chem.. 19:9186-9194.
W
Wu*, JJ, Ku CH, Wong TC, Wu CT, Chen KH, Chen LC.  2005.  Growth of nanocrystalline diamond films in CCl4/H2ambient. Thin Solid Films. 473:24-30.
Wu, JS, Dhara SK, Wu CT, Chen KH, Chen YF, Chen* LC.  2002.  Growth and optical properties of self-organized Au2Si nanosphere peapoded in silicon oxide nanowires. Adv. Mater.. 14:1847-1850.
Wu, JT, Chuang CJ, Chang KI, Yang CH, Chen KH.  1997.  Raman Spectroscopic Studies of Sulfation of Cerium Oxide. Appl. Catalysis B : Environmental. 12:309-324.
Wu, CT, Chen CW, Hu MS, Chen KH, Chen LC, Chu MW, Chen CH.  2010.  Anisotropic surface plasmon excitation in Au/silica nanowire. Appl. Phys. Lett.. 96:236106.
Wu, JJ, Wu CT, Liao YC, Lu TR, Chen LC, Chen KH, Hwa LG, Kuo CT, Ling KJ.  1999.  Deposition of silicon carbon nitride by ion-beam sputtering. Thin Solid Films. 355:417-422.
Wu, JJ, Liu SC, Wu CT, Chen* KH, Chen LC.  2002.  Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes. Appl. Phys. Lett.. 81:1312-1314.
Wu, JC, Chen CC, Chen KH, Chang* YC.  2011.  Controlled growth of aligned Alpha-helical polypeptide brushes for tunable electrical conductivity. ,Appl. Phys. Lett.. 98:133304.
Wu, CT, Chu MW, Liu CP, Chen KH, Chen LC, Chen CW, Chen CH.  2012.  Studies of electronic excitations of rectangular ZnOnanorods by electron energy-loss spectroscopy. Plasmonics. 7:123-130.
Wu, JT, Shih CF, Guo TH, Chen KH.  1997.  Raman Spectroscopic Studies of the Thermal Decomposition Mechanism of Ammonium Metavanadate. J. Mater. Chem. 7:2273.
Wu, JJ, Lu TR, Wu CT, Wang TY, Chen LC, Chen KH, Kuo CT, Yu YC, Wang CW, Lin EK.  1999.  Nano-carbon nitride synthesis from a bio-molecular target for ion beam sputtering at low temperature. Diamond and Related Materials. 8:605-609.