Publications

Export 43 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V [W] X Y Z   [Show ALL]
W
and W.C. Liu, Wen CY, Chen KH, Lin WC, Tsai* DP.  2001.  Near-field images of the AgOx super-resolution near-field structure. Appl. Phys. Lett.. 78:685-687.
W.Chiou, J, Tsai HM, Pao CW, Dong* CL, Chang CL, Chien FZ, Pong WF, Tsai M-H, Shi SC, Chen CF, Chen LC, Chen KH, Hong I-H, Chen C-H, Lin H-J, Guo JH.  2005.  Comparison of the electronic structures of AlN nanotips grown on p- and n-type Si substrates. J. Phys.: Condens. Matter. 17:7523-7530.
Wang, CH, Chen CC, Hsu HC, Du HY, Chen CP, Hwang JY, Chen LC, C.Shih H, Stejskal J, Chen* KH.  2009.  Low methanol-permeable polyaniline/nafion composite membrane for direct methanol fuel cell. J. Power. Sources. 190:279-284.
Wang, CH, Shih HC, Tsai YT, Du HY, Chen LC, Chen* KH.  2006.  High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen containing carbon nanotubes on carbon cloth. Electrochimica Acta. 52:1612-1617.
Wang, B-Y, Wang HT, Chen L-Y, Hsueh HC, Chiou JW, Wang W-H, Wang PH, Chen K-H, Chen Y-C, Chen L-C, Chen C-H, Pong WF, Wang J, Guo J-H.  2016.  Nonlinear opening of the band gap of BN-co-doped graphene. Carbon.
Wang, J, Chen KH, Mazur E.  1986.  Time-resolved Spontaneous Raman Spectroscopy of Infrared-multiphoton-excited SF6. Phys. Rev.A. 34:3892.
Wang, CT, Ma* KJ, Chen KH, Chen LC, Kichambare PD.  2001.  Ion beam sputtered growth and mechanical properties of SiCN films. J. of Mater. Sci. and Engineering. 33:38.
Wang, CH, Hsu HC, Chang ST, Du HY, Wu CH, Shih HC, Chen LC, Chen* KH.  2010.  Platinum nanoparticles embedded in nitrogen-containing complexes for high methanol-tolerant oxygen reduction activity. J. Mater. Chem.. 20:7551-7557.
Wang, CH, Du H-Y, Tsai YT, Chen CP, Huang CJ, Chen LC, Chen* KH, Shih HC.  2007.  High performance of low electrocatalysts loading on CNT directly grown on carbon for DMFC. J. Power Sources. 171:55-62.
Wang, J, Chen KH, Mazur E.  1988.  Raman Spectroscopy of Infrared Multiphoton Excited Molecules. Laser Chem.. 8:97.
Wang, SB, Chang SJ, Hu MS, Chong CW, Huang BR, Chen KH, Chen LC.  2012.  Gold nanoparticles-modulated conductivity in gold peapodded silica nanowire. Nanoscale. 4:3660-3664.
Wang, SB, Huang YF, Chattopadhyay S, Chang SJ, Chen RS, Chong CW, Hu MS, Chen LC, Chen KH.  2013.  Surface plasmon-enhanced gas sensing in single gold peapodded-silica nanowire. Asia Materials.
Wang, C-H, Chang S-T, Hsu H-C, Du H-Y, Wu JC-S, Chen L-C, Chen* K-H.  2011.  Oxygen reducing activity of methanol-tolerant catalysts by high-temperature pyrolysis. Diamond & Relat. Mater.. 20:322.
Wang, DY, Teng TS, Wu YC, Lee YC, Chen KH, Chen CH, Chang* YC, Chen* CC.  2009.  Silver-Nanoparticle-Conjugated Polypeptide Brushes for Surface-Enhanced Raman Scattering. J. Phys. Chem.. C13:13498-13504.
Wei, PC, Chattopadhyay S, Lu CY, Hsiao CL, Shih HC, Chen LC, Chen KH.  2010.  Room-temperature negative photoconductivity in degenerate InN thin films with a supergap excitation. Phys. Rev.. B 81:045306.
Wei, PC, Chattopadhyay S, Lin FS, Hsu CM, Jou S, Chen JT, Huang PJ, Chen LC, Chen KH, Shih HC.  2009.  Origin of the anomalous temperature evolution of photoluminescence peak energy in degenerate InN nanocolumns. Opt. Express. 17:11690-11697.
Wei, PC, Chen KH, Chen LC.  2014.  Surface diffusion controlled formation of high quality vertically aligned InN nanotubes. J. Appl. Phys.. 116:124301.
Wei, PC, Shih HC, Hsu CM, Lin FS, Chen KH, Chattopadhyay* S, Ganguly A, Hsu CW, Chen LC.  2008.  Thermal diffusivity study in supported epitaxial InN thin films by the Traveling-Wave technique. J. Appl. Phys.. 104:064920.
Wei-ChaoChen, Tunuguntla V, Min-HsuehChiu, Lian-JiunLi, Shown I, Lee C-H, Hwang J-S, Chen L-C, Chen K-H.  2017.  Co-solvent effect on microwave-assisted Cu2ZnSnS4 nanoparticles synthesis for thin film solar cell. Solar Energy Materials and Solar Cells. 161:416-423.
Wei-ChaoChen, Cheng-YingChen, Tunuguntla V, HungLu S, ChaochinSu, Lee C-H, Chen K-H, Chen L-C.  2016.  Enhanced solar cell performance of Cu2ZnSn(S,Se)4 thin films through structural control by using multi-metallic stacked nanolayers and fast ramping process for sulfo-selenization. Nano Energy. 30:762-770.
Wei-ChaoChen, Cheng-YingChen, Lin Y-R, Chang J-K, Chen C-H, Chiu Y-P, Wu C-I, Chen K-H, Chen L-C.  2019.  Interface engineering of CdS/CZTSSe heterojunctions for enhancing the Cu2ZnSn(S,Se)4 solar cell efficiency. Materials Today Energy. 13:256-266. AbstractWebsite

Interface engineering of CdS/CZTS(Se) is an important aspect of improving the performance of buffer/absorber heterojunction combination. It has been demonstrated that the crossover phenomenon due to the interface recombination can be drastically eliminated by interface modification. Therefore, in-depth studies across the CdS/CZTS(Se) junction properties, as well as effective optimization processes, are very crucial for achieving high-efficiency CZTSSe solar cells. Here, we present a comprehensive study on the effects of soft-baking (SB) temperature on the junction properties and the corresponding optoelectronic and interface-structural properties. Based on in-depth photoemission studies corroborated with structural and composition analysis, we concluded that interdiffusion and intermixing of CZTSSe and CdS phases occurred on the Cu-poor surface of CZTSSe at elevated SB temperatures, and the interface dipole moments induced by electrostatic potential fluctuation were thus significantly eliminated. In contrast, with low SB temperature, the CdS/CZTSSe heterojunction revealed very sharp interface with very short interdiffusion, forming interface dipole moments and drastically deteriorating device performance. These post thermal treatments also significantly suppress defect energy level of interface measured by admittance spectroscopy from 294 to 109 meV due to CdS/CZTSSe interdiffusion. Meanwhile, the interdiffusion effects on the shift of valence band maximum, conduction band minimum and band offset across the heterojunction of thermally treated CdS/CZTSSe interface are spatially resolved at the atomic scale by measuring the local density of states with cross-sectional scanning tunneling microscopy and spectroscopy. A significant enhancement in the power conversion efficiency from 4.88% to 8.48% is achieved by a facile interface engineering process allowing a sufficient intermixing of CdS/Cd and CZTSSe/Se phases without detrimental recombination centers.

Wen, CY, Wu JJ, Lo HJ, Chen LC, Chen KH, Lin ST, Yu Y-C, Wang C-W, Lin E-K.  2000.  Methylamine growth of SiCN films using ECR-CVD. Mat. Res. Soc. Symp.. :606,115-120.
Wong, DP, Huang CY, Chien WL, Chang CE, Ganguly A, Lyu LM, Hwang JS, Chen LC, Chen KH.  2016.  Enhanced thermoelectric performance in percolated bismuth sulfide composite. RSC Advances . 6:98952.
Wong, DP, Suriyaprabha R, Yuvakumar R, Rajendran V, Chen YT, Hwang BJ, Chen LC, Chen KH.  2014.  Binder-free rice husk-based silicon-graphene composite as energy efficient Li-ion battery anodes. J. Mater. Chem. A. 2:13437-13441.
Wong, DP, Lien HT, Chen YT, Chen KH, Chen LC.  2012.  Patterned growth of nanocrystalline silicon thin films through magnesiothermic reduction of soda lime glass. Green Chemistry. 14:896-900.