Publications

Export 32 results:
Sort by: Author Title Type [ Year  (Desc)]
2022
Valiyaveettil, SM, Qorbani M, Hsing C-R, Chou T-L, Paradis-Fortin L, Sabbah A, Srivastava D, Nguyen D-L, Ho T-T, Billo T, Ganesan P, Wei C-M, Chen L-C, Chen K-H.  2022.  Enhanced thermoelectric performance of skutterudite Co1−yNiySn1.5Te1.5−x with switchable conduction behavior, 2022. Materials Today Physics. 28:100889. AbstractWebsite

A fine control of carriers in solids is the most essential thing while exploring any functionality. For a ternary skutterudite like CoSn1·5Te1.5−x, which has been recently recognized as a potential material for thermoelectric conversion, the dominant carrier could be either electrons or holes via chemically tuning the quaternary Sn2Te2 rings in the structure. Both theoretical calculation and different spectroscopic probes, such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) were employed to unveil the conduction type switching details. On the other hand, a Ni-for-Co substitution was applied to enhance electronic transport, and thereby the thermoelectric power factor. Thanks to the substantial cut-off of lattice thermal conductivity by the characteristic Sn2Te2 rings in the skutterudite structure, ultimately a 70-fold increase in the dimensionless figure-of-merit (zT) is achieved at 723 K with the nominal composition Co0·95Ni0·05Sn1·5Te1.5.

2020
Howlader, S, Vasudevan R, Jarwal B, Gupta S, Chen K-H, Sachdev K, Banerjee MK.  2020.  Microstructure and mechanical stability of Bi doped Mg2Si0.4Sn0.6 thermoelectric material, 2020. 818:152888. AbstractWebsite

Bi doped Mg2Si0.4Sn0.6 had been synthesised in a high energy ball mill followed by compaction using a sintering hot press. The structural and compositional characterization of sintered mass indicated the formation of a highly densified single-phase product. The microstructure of the hot-pressed samples had been critically assessed. Thermoelectric properties were measured between room temperature and 723 K. A decrease in electrical conductivity was found with the increase in temperature but the Seebeck coefficient showed a reverse trend justifying the attainment of degenerate semiconducting behaviour. Meanwhile, the lattice thermal conductivity was subdued to 1.5 W/mK at 623 K. However, the highest zT value of 0.8 was achieved at 723 K. Moreover, the detailed X-ray photoelectron spectroscopic analysis was carried for the determination of binding energy of the constituent elements in the experimental alloy; it also provided the correct estimation of atomic percentage of the concerned elements. The Raman spectrum revealed a shift in F2g peak with respect to that of Mg2Sn and Mg2Si in correspondence with the composition of the synthesised alloy. The synthesised alloy showed micro and nano hardness of 3.7 and 4.03 GPa respectively, which implies that good mechanical strength could be achieved in the synthesised alloy.

2017
Pathak, A, Chiou GR, Gade NR, Usman M, Mendiratta S, Luo T-T, Tseng TW, Chen J-W, Chen F-R, Chen K-H, Chen L-C, Lu K-L.  2017.  High-κ Samarium-Based Metal–Organic Framework for Gate Dielectric Applications. ACS Appl. Mater. Interfaces. 9(26):21872–21878.
Qorbani, M, Chou T-chin, Lee Y-H, Samireddi S, Naseri N, Ganguly A, Esfandiar A, Wang C-H, Chen L-C, Chen K-H, Moshfegh AZ.  2017.  Multi-porous Co3O4 nanoflakes @ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors. Journal of Materials Chemistry A. 5:12569-12577.
2016
Yesi, Y, Shown I, Ganguly A, Ngo TT, Chen LC, Chen KH.  2016.  Directly-grown hierarchical carbon nanotube@polypyrrole core-shell hybrid for high-performance flexible supercapacitors. ChemSusChem . 9:370-378.
Wong, DP, Huang CY, Chien WL, Chang CE, Ganguly A, Lyu LM, Hwang JS, Chen LC, Chen KH.  2016.  Enhanced thermoelectric performance in percolated bismuth sulfide composite. RSC Advances . 6:98952.
Wang, B-Y, Wang HT, Chen L-Y, Hsueh HC, Chiou JW, Wang W-H, Wang PH, Chen K-H, Chen Y-C, Chen L-C, Chen C-H, Pong WF, Wang J, Guo J-H.  2016.  Nonlinear opening of the band gap of BN-co-doped graphene. Carbon.
2015
Shown, I, Ganguly A, Chen L-C, Chen K-H.  2015.  Conducting polymer-based flexible supercapacitor, 2015. Energy Science & EngineeringEnergy Science & Engineering. 3(1):2-26.: John Wiley & Sons, Ltd AbstractWebsite

Abstract Flexible supercapacitors, a state-of-the-art material, have emerged with the potential to enable major advances in for cutting-edge electronic applications. Flexible supercapacitors are governed by the fundamentals standard for the conventional capacitors but provide high flexibility, high charge storage and low resistance of electro active materials to achieve high capacitance performance. Conducting polymers (CPs) are among the most potential pseudocapacitor materials for the foundation of flexible supercapacitors, motivating the existing energy storage devices toward the future advanced flexible electronic applications due to their high redox active-specific capacitance and inherent elastic polymeric nature. This review focuses on different types of CPs-based supercapacitor, the relevant fabrication methods and designing concepts. It describes recent developments and remaining challenges in this field, and its impact on the future direction of flexible supercapacitor materials and relevant device fabrications.

Chen, WC, Lien HT, Cheng TW, Su C, Chong CW, Ganguly A, Chen KH, Chen* LC.  2015.  Side Group of Poly(3-alkylthiophene)s Controlled Dispersion of Single-Walled Carbon Nanotubes for Transparent Conducting Film. ACS Appl. Mater. & Inter. . 7:4616.
2013
Chang, CK, Kataria S, Kuo CC, Ganguli A, Wang BY, Hwang JY, Huang KJ, Yang WH, Wang SB, Chuang CH, Chen M, Huang CI, Pong WF, Song KJ, Chang SJ, Guo J, Tai Y, Tsujimoto M, Isoda S, Chen CW, Chen LC, Chen KH.  2013.  Band gap engineering of chemical vapor deposited graphene by in-situ BN doping. ACS Nano. 7:1333-1341.
2011
Pao, C-W, Wu C-T, Tsai H-M, Liu Y-S, Chang C-L, Pong WF, Chiou J-W, Chen C-W, Hu M-S, Chu M-W, Chen L-C, Chen C-H, Chen K-H, Wang S-B, Chang S-J, Tsai M-H, Lin H-J, Lee J-F, Guo J-H.  2011.  Photoconduction and the electronic structure of silica nanowires embedded with gold nanoparticles. Phys. Rev. B. 84:165412.
Chen, CP, Ganguly A, Chen RS, Fischer W, Chen LC, Chen KH.  2011.  Ultra-sensitive in situ label-free DNA detection using GaN nanowires-based extended-gate field-effect-transistor sensor. Anal. Chem.. 83:1938-1943.
2010
Lai, YT, Ganguly A, Chen CP, Chen KH, Chen* LC.  2010.  Direct voltammetric sensing of L-cysteine atpristine GaN nanowires electrode. Biosensors and Bioelectronics. 26:1688-1691.
and A. M. Basilio, Hsu YK, Wei PC, Ganguly A, Shih HC, Chen YT, Chen LC, Chen* KH.  2010.  Electrochemical Characterization of InN Thin Film for Biosensing Applications. J. New Mat. Electrochem. Systems. 13:337-343.
2009
Ganguly, A, Chen CP, Lai YT, Kuo CC, Hsu CW, Chen* KH, Chen* LC.  2009.  Functionalized GaN nanowires-based electrode for direct label-free voltammetric detection of DNA hybridization. J. Mater. Chem.. 19:928–933.
Chen, CP, Ganguly A, Wang CH, Hsu CW, Hsu YK, Chang YC, Chen* KH, Chen* LC.  2009.  Label-free dual sensing of DNA molecules using GaN nanowires. Anal. Chem.. 81:36-42.
Wright, JS, Lim W, Gila BP, Pearton* SJ, Ren F, Lai WT, Chen LC, Hu MS, Chen KH.  2009.  Pd-catalyzed hydrogen sensing with InN nanobelts. J. Vac. Sci. Technol.. B 27:L8-10.
Berzina, B, Trinkler L, Jakimovica D, Korsaks V, Grabis J, Steins I, Palcevskis, Bellucci S, Chen LC, Chattopadhyay S t, Chen KH.  2009.  Spectral characterization of bulk and nanostructuredaluminum nitride. J. Nanophotonics. 3:031950.
2008
Hsu, CW, Ganguly A, Liang CH, Hung YY, Wu CT, Hsu GM, Chen YF, Chen CC, Chen* KH, Chen* LC.  2008.  Enhanced emission of InGaN nanowires embedded with self-assembled quantum dots. Adv. Func. Mater.. 18:938.
Ray, SC, Palnitkar U, Pao CW, Tsai HM, Pong* WF, Lin I-N, Papakonstantinou P, Ganguly A, Chen LC, Chen KH.  2008.  Field emission effects of nitrogenated carbon nanotubes on chlorination and oxidation. J. Appl. Phys.. 104:063710.
Hsiao, CL, Liu TW, Wu CT, Hsu HC, Chen* LC, Hsiao WY, Yang CC, Gällström A, Holtz P, Hsu GM, Chen* KH.  2008.  High-phase-purity zinc-blende InN on r-plane sapphire substrate with controlled nitridation pretreatment. Appl. Phys. Lett.. 92:111914.
Lim, W, Wright JS, Gila BP, Pearton SJ, Ren F, Lai WT, Chen LC, Hu MS, Chen KH.  2008.  Selective-hydrogen sensing at room temperature with Pt-coated InN nanobelts. Appl. Phys. Lett.. 93:202109-(1-3).
Wei, PC, Shih HC, Hsu CM, Lin FS, Chen KH, Chattopadhyay* S, Ganguly A, Hsu CW, Chen LC.  2008.  Thermal diffusivity study in supported epitaxial InN thin films by the Traveling-Wave technique. J. Appl. Phys.. 104:064920.
2007
Chang, CY, Pearton* SJ, Huang PJ, G.C. Chi H, Wang T, Chen JJ, Ren F, Chen KH, Chen LC.  2007.  Control of nucleation site density of GaN nanowires. Appl. Surf. Sci.. 253:3196-3200.
Raym, SC, Pao CW, Tsai HM, Chiou JW, Pong* WF, Chen CW, Tsai MH, Papakonstantinou P, Chen LC, Chen KH, Graham WG.  2007.  Electronic structures and bonding properties of chlorine-treated nitrogenated carbon nanotubes: X-ray absorption and scanning photoelectron microscopy study. Appl. Phys. Lett.. 90:192107.