Export 6 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G [H] I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Huang, SJ, Hsu YT, Lee H, Chen YC, Volosniev AG, Zinner NT, Wang DW.  2012.  Field-induced long-lived supermolecules, May 7. Physical Review A. 85 AbstractWebsite

We demonstrate that the long-lived bound states (supermolecules) can exist in the dilute limit when we tune the shape of the effective potential between polar molecules by an external microwave field. Binding energies, average sizes, and phase diagrams for both s-orbital (bosons) and p-orbital (fermions) dimers are studied, together with bosonic trimer states. We explicitly show that the nonadiabatic transition rate can be easily tuned small for such ground-state supermolecules, so that the system can be stable from collapse even near the associated potential resonance. Our results, therefore, suggest a feasible cold molecule system to investigate novel few-body and many-body physics (for example, the p-wave BCS-Bose-Einstein-condensate crossover for fermions and the paired condensate for bosons) that cannot be easily accessed in single species atomic gases.

Hsu, C-Y, Wang Y-S, Chen J-M, Huang F-C, Ke Y-T, Huang EK, Hung W, Chao K-L, Hsaio S-S, Chen Y-H, Chuu C-S, Chen Y-C, Chen Y-F, Yu IA.  2021.  Generation of sub-MHz and spectrally-bright biphotons from hot atomic vapors with a phase mis-match-free scheme. Optics Express. 29, 4632(2021)
Hsiao, Y-F, Lin Y-J, Chen Y-C.  2018.  Λ -enhanced gray-molasses cooling of cesium atoms on the D 2 line. Phys. Rev. A. 98(033419)
Hsiao, Y-F, Chen H-S, Tsai P-J, Chen Y-C.  2014.  Cold atomic media with ultrahigh optical depths. Phys. Rev. A. 90:054401. Abstract

We present an experimental study to achieve ultrahigh optical depths for cold atomic media with a two dimensional magneto-optical trap (MOT) of cesium. By combining large atom number, a temporally dark and compressed MOT, and Zeeman-state optical pumping, we achieve an optical depth of up to 1306 for the open transition of the cesium D1 line. Our work demonstrates that it is feasible to push the optical depth up to the 1000 level with a convenient MOT setup. This development paves the way to many important proposals in quantum optics and many-body physics.

Hsiao, Y-F, Tsai P-J, Chen H-S, Lin S-X, Hung C-C, Lee C-H, Chen Y-H, Chen Y-F, Yu IA, Chen Y-C.  2018.  Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency. Phys. Rev. Lett. 120(183602)
Hsiao, Y-F, Tsai P-J, Lin C-C, Chen Y-F, Yu IA, Chen Y-C.  2014.  Coherence properties of amplified slow light by four-wave mixing. Optics Letters. 39(12):3394-3397. Abstract

We present an experimental study of the coherence properties of amplified slow light by four-wave mixing (FWM) in a three-level electromagnetically induced transparency (EIT) system driven by one additional pump field. High energy gain (up to 19) is obtained with a weak pump field (a few mW∕cm2) using optically dense cold atomic gases. A large fraction of the amplified light is found to be phase incoherent to the input signal field. The dependence of the incoherent fraction on pump field intensity and detuning and the control field intensity is systematically studied. With the classical input pulses, our results support a recent theoretical study by Lauk et al. [Phys. Rev. A 88, 013823 (2013)], showing that the noise resulting from the atomic dipole fluctuations associated with spontaneous decay is significant in the high gain regime. This effect has to be taken into consideration in EIT-based applications in the presence of FWM.