Publications

User warning: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ')) ORDER BY timestamp DESC' at line 1 query: SELECT timestamp FROM views_content_cache WHERE (()) ORDER BY timestamp DESC in _db_query() (line 169 of /var/www/html/iams/project/includes/database.mysqli.inc).
Export 1794 results:
Sort by: Author Title Type [ Year  (Desc)]
2003
Chiou, JW, Jan JC, Tsai HM, Pong* WF, Tsai MH, Hong IH, Klauser R, Lee JF, Hsu CW, Lin HM, Chen CC, Shen CH, Chen LC, Chen KH.  2003.  Electronic structure of GaN nanowire studied by X-ray-absorption spectroscopy and scanning photoelectron microscopy. Appl. Phys. Lett.. 82:3949-3951.
Dhara, SK, Datta A, Wu CT, Lan ZH, Chen* KH, Wang YL, Chen LC, Hsu CW, Lin HM, Chen CC.  2003.  Enhanced dynamic annealing in self-ion implanted GaN nanowires. Appl. Phys. Lett.. 82:451-453.
Kan, MC, Huang* JL, Sung JC, Chen KH, Lii DF.  2003.  Enhanced field emission from nitrogen-doped amorphous diamond. J. Mater. Res.. 18:1594-1599.
  2003.  Ex per i men tal and The o ret i cal Studies of Quan tum Beats in Flu orescence. Journal of the Chinese Chemical Society . 50:631-639.34_quantum_beat.pdf
Kan, MC, Huang* JL, Sung J, Lii DF, Chen KH.  2003.  Field emission characteristics of amorphous diamond. J. Am. Cherem. Soc.. 86:1513-1517.
Hutson, SM, Tokutake Y, Chang M-S, Bloor JW, Venakides S, Kiehart* DP, Edwards GS.  2003.  Forces for Morphogenesis Investigated with Laser Microsurgery and Quantitative Modeling. Science. 300:145.
Lee, CH, Lin TS, Lin HP, Zhao Q, Liu SB, Mou CY.  2003.  High loading of C-60 in nanochannels of mesoporous MCM-41 materials. Microporous and Mesoporous Materials. 57:199-209.
Chen, WH, Zhao Q, Lin HP, Yang YS, Mou CY, Liu SB.  2003.  Hydrocracking in Al-MCM-41: diffusion effect. Microporous and Mesoporous Materials . 66:209-218.
Wu, JS, Chen YF, Dhara S, Wu CT, Chen KH, Chen* LC.  2003.  Interface energy of Au7Si grown in the interfacial layer of truncated hexagonal dipyramidal Au nanoislands on polycrystalline-silicon. Appl. Phys. Lett.. 82:4468-4470.
Chien, SC, Chattopadhyay* S, Chen LC, Lin ST, Chen KH.  2003.  Mechanical properties of amorphous boron carbon nitride films produced by dual gun sputtering. Diamond Relat. Mater. . 12:1463-1471.
Kan, MC, Huang* JL, Sung JC, Chen KH, Lii DF.  2003.  Nano-tip emission of tetrahedral amorphous carbon. Diamond & Related Materials. 12:1691-1697.
  2003.  Photodissociation dynamics of azulene. JOURNAL OF CHEMICAL PHYSICS VOLUME. 119(4)32_azulene.pdf
  2003.  Photodissociation Dynamics of Fluorobenzene. Journal of the American Chemical Society. 125:9814-9820.33__fluorobenzene.pdf
  2003.  Photoisomerization and Photodissociation of m-Xylene in a Molecular Beam. Journal of Physical Chemsitry. 107:4019-4024.31_xylene.pdf
Zhao, Q, Chen WH, Huang SJ, Liu SB.  2003.  Qualitative and quantitative determination of acid sites on solid acid catalysts. Science and Technology in Catalysis 2002. 145:205-209.
Dhara*, S, Kesavamoorthy R, Magudapathy P, Premila M, Panigrahi BK, Nair KGM, Wu CT, Chen KH, Chen LC.  2003.  Quasiquenching size effects in gold nanoclusters embedded in silica matrix. Chem. Phys. Lett.. 370:254-260.
Chen, WH, Zhao Q, Huang SJ, Mou CY, Liu SB.  2003.  Roles of pore size and Al content on the catalytic performance of Al-MCM-41 during hydrocracking reaction. Nanotechnology in Mesostructured Materials. 146:681-684.
Lo, HC, Das D, Hwang JS, Chen KH, Hsu CH, Chen CF, Chen LC.  2003.  SiC-capped nanotip arrays for field emission with ultralow turn-on field. Appl. Phys. Lett.. 83:1420-1422.
M.C. Kan, Huang* JL, Sung JC, Chen KH, Yau BS.  2003.  Thermionic emission of amorphous diamond and field emission of carbon nanotube. Carbon. 41:2839-2845.
Kolganova, EA, Ho YK, Motovilov AK, Sandhas W.  2003.  The\^{} 3He\^{} 4He\_2 $ trimer within the hard-core Faddeev approach. arXiv preprint physics/0304048. Abstract
n/a
2002
Kidd, TE, Miller T, Chou MY, Chiang TC.  2002.  Comment on "Sn/Ge(111) surface charge-density-wave phase transition" - Reply, May. Physical Review Letters. 88:1., Number 18 AbstractWebsite
n/a
Kidd, TE, Miller T, Chou MY, Chiang TC.  2002.  Electron-hole coupling and the charge density wave transition in TiSe2, Jun. Physical Review Letters. 88:4., Number 22 AbstractWebsite

Angle-resolved photoemission is employed to measure the band structure of TiSe2 in order to clarify the nature of the (2x2x2 ) charge density wave transition. The results show a very small indirect gap in the normal phase transforming into a larger indirect gap at a different location in the Brillouin zone. Fermi surface topology is irrelevant in this case. Instead, electron-hole coupling together with a novel indirect Jahn-Teller effect drives the transition.

Chiang, TC, Chou MY, Kidd T, Miller T.  2002.  Fermi surfaces and energy gaps in Sn/Ge(111), Jan. Journal of Physics-Condensed Matter. 14:R1-R20., Number 1 AbstractWebsite

One third of a monolayer of Sn adsorbed on Ge(111) undergoes a broad phase transition upon cooling from a (root3 x root3)R30degrees normal phase at room temperature to a (3 x 3) phase at low temperatures. Since band-structure calculations for the ideal (root3 x root3)R30degrees phase show no Fermi-surface nesting, the underlying mechanism for this transition has been a subject of much debate. Evidently, defects formed by Ge substitution for Sn in the adlayer, at a concentration of just a few percent, play a key role in this complex phase transition. Surface areas near these defects are pinned to form (3 x 3) patches above the transition temperature. Angle-resolved photoemission is employed to examine the temperature-dependent band structure, and the results show an extended gap forming in k-space as a result of band splitting at low temperatures. On account of the fact that the room temperature phase is actually a mixture of (root3 x root3)R30degrees areas and defect-pinned (3 x 3) areas, the band structure for the pure (root3 x root3)R30degrees phase is extracted by a difference-spectrum method. The results are in excellent agreement with band calculations. The mechanism for the (3 x 3) transition is discussed in terms of a response function and a tight-binding cluster calculation. A narrow bandwidth and a small group velocity near the Fermi surface render the system highly sensitive to surface perturbations, and formation of the (3 x 3) phase is shown to involve a Peierls-like lattice distortion mediated by defect doping. Included in the discussion, where appropriate, are dynamic effects and many-body effects that have been previously proposed as possible mechanisms for the phase transition.