Tsai, P-Y, Lin K-C.
2015.
Insight into the photodissociation dynamical feature of conventional transition state and roaming pathways by an impulsive model. Journal of Physical Chemistry A. 119:29-38., Number 1
AbstractWithout the need to construct complicated potential energy surfaces, a multicenter impulsive model is developed to characterize the dynamical feature of conventional transition state (TS) and roaming pathways in the photodissociation of formaldehyde, H2CO → CO + H2. The photofragment energy distributions (PED) resulting from the roaming mechanism are found to closely correlate to a particular configuration that lies close to the edge of the plateau-like intrinsic reaction coordinate, whereas such a PED is associated with the configuration at the saddle point when the conventional TS pathway is followed. The evaluated PED results are consistent with those by experimental findings and quasi-classical trajectory calculations. Following impulsive analysis, the roaming pathway can be viewed as a consequence of energy transfer events between several vibrational modes. For H2CO, the available energy initially accumulated at the C-H bond is transferred to other transitional mode(s) via stretching-bending coupling, and finally to the HH stretching. (Chemical Presented). © 2014 American Chemical Society.
Lee, H-L, Dhenadhayalan N, Lin K-C.
2015.
Metal ion induced fluorescence resonance energy transfer between crown ether functionalized quantum dots and rhodamine B: Selectivity of K+ ion. RSC Advances. 5:4926-4933., Number 7
AbstractWe report a ratiometric fluorescent metal ion sensor based on the mechanism of fluorescence resonance energy transfer (FRET) between synthesized 15-crown-5-ether capped CdSe/ZnS quantum dots (QDCE) and 15-crown-5-ether attached rhodamine B (RBCE) in pH 8.3 buffer solution. Fluorescence titration with different metal ions in pH 8.3 buffer solution of the QDCE-RBCE conjugate showed a decrease and an increase in the fluorescence intensity for QDCE and RBCE moieties respectively due to FRET from QDCE to RBCE. This sensor system shows excellent selectivity towards K+ ions resulting in increasing efficiency of FRET. Energy transfer efficiency depends on the affinity between metal ions and crown ether functionalized with QDCE/RBCE. The detailed analysis of FRET was explored. This water soluble ratiometric sensor system can act as a good FRET probe for sensing applications especially in biological systems. © The Royal Society of Chemistry 2015.
Lin, K-C, Tsai P-Y, Chao M-H, Kasai T, Lombardi A, Palazzetti F, Aquilanti V.
2015.
Photodissociation of methyl formate: Conical intersections, roaming and triple fragmentation. AIP Conference Proceedings. 1702
AbstractThe photodissociation channels of methyl formate have been extensively investigated by two different advanced experimental techniques, ion imaging and Fourier-Transform-Infrared emission spectroscopy, combined with quantum chemical calculations and molecular dynamics simulations. Our aim is to characterize the role of alternative routes to the conventional transition-state mediated pathway: the roaming and the triple fragmentation processes. The photolysis experiments, carried out at a range of laser wavelengths in the vicinity of the triple fragmentation threshold, beside the simulation of large bunches of classical trajectories with different initial conditions, have shown that both mechanisms share a common path that involves a conical intersection during the relaxation process from the electronic excited state S1 to the ground state S0. © 2015 AIP Publishing LLC.
Tsai, P-Y, Li H-K, Kasai T, Lin K-C.
2015.
Roaming as the dominant mechanism for molecular products in the photodissociation of large aliphatic aldehydes. Physical Chemistry Chemical Physics. 17:23112-23120., Number 35
AbstractPhotodissociation of isobutyraldehyde (C3H7CHO) at 248 nm is investigated using time-resolved Fourier-transform infrared emission spectroscopy to demonstrate the growing importance of the roaming pathway with increasing molecular size of aliphatic aldehydes. Each acquired CO rotational distribution from v = 1 to 4 is well characterized by a single Boltzmann rotational temperature from 637 to 750 K, corresponding to an average rotational energy of 5.9 ± 0.6 kJ mol-1. The roaming signature that shows a small fraction of CO rotational energy disposal accompanied by a vibrationally hot C3H8 co-fragment is supported by theoretical prediction. The energy difference between the tight transition state (TS) and the roaming saddle point (SP) is found to be -27, 4, 15, 22, and 30 kJ mol-1 for formaldehyde, acetaldehyde, propionaldehyde, isobutyraldehyde, and 2,2-dimethyl propanal, respectively. The roaming SP is stabilized by a larger alkyl moiety. It is suggested that the roaming photodissociation rate of aldehydes increasingly exceeds those via the tight TS, resulting in the dominance of the CO + alkane products, as the size of aldehydes becomes larger. Along with formaldehyde, acetaldehyde, and propionaldehyde, in this work isobutyraldehyde is further demonstrated that this aldehyde family with special functional group is the first case in the organic compound to follow predominantly a roaming dissociation pathway, as the molecular size becomes larger. © the Owner Societies 2015.
Kasai, T, Che D-C, Tsai P-Y, Lin K-C, Palazzetti F, Aquilanti V.
2015.
Stereodynamics: From elementary processes to macroscopic chemical reactions. AIP Conference Proceedings. 1702
AbstractThis paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed. © 2015 AIP Publishing LLC.
Natterer, FD, Zhao Y, Wyrick J, Chan Y-H, Ruan W-Y, Chou M-Y, Watanabe K, Taniguchi T, Zhitenev NB, Stroscio JA.
2015.
Strong Asymmetric Charge Carrier Dependence in Inelastic Electron Tunneling Spectroscopy of Graphene Phonons. Physical Review Letters. 114, Number 24
Abstractn/a