Publications

User warning: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ')) ORDER BY timestamp DESC' at line 1 query: SELECT timestamp FROM views_content_cache WHERE (()) ORDER BY timestamp DESC in _db_query() (line 169 of /var/www/html/iams/project/includes/database.mysqli.inc).
Export 804 results:
Sort by: Author Title Type [ Year  (Desc)]
2021
Liu, C-H, Huang* S-J, Yu** T-Y.  2021.  Cholesterol Modulates the Interaction between HIV-1 Viral Protein R and Membrane. Membranes. 11(10):784.
A.Ankur, Chen C-Y, Chen T-H, Liu Y-C, Sheu S-Y, Y.-T.Chen.  2021.  Detecting glycated hemoglobin in human blood samples using a transistor-based nanoelectronic aptasensor . Nano Today. 41:101294.view
Cheng, C-Y, Liu Z-Y, Hu P-S, Wang T-N, Chien C-Y, Shiu J-S, Yu IA, Chen Y-C, Chen Y-F.  2021.  Efficient frequency conversion based on electromagnetically induced transparency. Optics Letters. 46, 681(2021)
Lin, K.-C., MCKCBH-P.  2021.  Halogen-related photodissociation in atmosphere: characterisation of atomic halogen, molecular halogen, and hydrogen halide. AbstractWebsite

Atomic halogen elimination from halogen-related compounds plays a vital role in the depletion of the ozone layer and is well investigated. However, the probabilities for elimination of molecular halogens and hydrogen halides are rarely scrutinised. We develop distinct method for the investigation of each kind of fragment. Velocity-mapping ion-imaging was employed to study the atomic halogen elimination from alkyl halides and aryl halides, focusing on the fractions of the translational energy release, the quantum yields of the atomic fragments, transition probability for curve crossing, competitive halogen-related bond fission, and anisotropy parameters to understand their dynamical complexity. Cavity ring-down absorption spectroscopy was implemented to investigate the molecular halogen fragments dissociated from the aliphatic halides and acyl halides for their optical spectra, vibrational branches, quantum yields, and the dissociation mechanisms. Time-resolved Fourier transform infrared emission spectroscopy was employed to confine the primary products of hydrogen halide elimination from acyl halides in the presence of Ar gas. It is, for the first time, to overview these existing small halogen-related fragments eliminated from halogen-containing compounds. The detailed characterisation of these fragments should unveil complicated halogen-related dissociation mechanisms which may supplement the current knowledge and help with the photochemical assessment of halogen-related environmental issue. © 2020 Informa UK Limited, trading as Taylor & Francis Group.

Huang, S-P, Hsu HC, Liew CY, Tsai S-T, Ni* C-K.  2021.  Logically derived sequence tandem mass spectrometry for structural determination of galactose oligosaccharides.. Glycoconj. J.. 38:177-189.
A.Ankur, Tseng H-C, Chiang H-C, Hsu W-H, Liao Y-F, Lu SH-A, Tsai S-Y, Pan C-Y, Chen Y-T.  2021.  SignificantElevationinPotassiumConcentrationSurrounding StimulatedExcitableCellsRevealedbyanAptamer-Modified NanowireTransistor. ACS Appl. Bio. Mater. . 4:6865−6873.view
Liew, CY, Yen C-C, Chen J-L, Tsai S-T, Pawar S, Wu* C-Y, Ni* C-K.  2021.  Structural identification of N-glycan isomers using logically derived sequence tandem mass spectrometry.. Commun. Chem.. 4:92.
Lin, H-Y, Dyakov YA, Lee YT, Ni* C-K.  2021.  Temperature dependence of desorbed ions and neutrals and ionization mechanism of matrix-assisted laser desorption/ionization.. J. Am. Soc. Mass. Spectrom.. 32:95-105.
Lee, C, Inutan ED, Chen JL, Mukeku1 MM, Weidner SM, Trimpin S, Ni* CK.  2021.  Toward understanding the ionization mechanism of matrix‐assisted ionization using mass spectrometry experiment and theory.. Rapid Commun Mass Spectrom.. 35:e8382.
Kim, B, Chen K-T, Hsiao S-S, Wang S-Y, Li K-B, Ruseckas J, Juzeliūnas G, Kirova T, Auzinsh M, Chen Y-C, Chen Y-F, Yu IA.  2021.  A weakly-interacting many-body system of Rydberg polaritons based on electromagnetically in-duced transparency. Commun. Phys. 4:101(2021)
Tsao, H-C, Liao Y-F, Pratiwi FW, Mou C-Y, Lin Y-J, Pan C-Y, Chen Y-T.  2021.  Zn2+-Depletion Enhances Lysosome Fission in Cultured Rat Embryonic Cortical Neurons Revealed by a Modified Epifluorescence Microscopic Technique. Microscopy and Microanalysis. 27:420–424.view
Lin, M-K, He T, Hlevyack JA, Chen P, Mo S-K, Chou M-Y, Chiang T-C.  2021.  Coherent Electronic Band Structure of TiTe2/TiSe2 Moiré Bilayer. ACS Nano. 15:3359-3364., Number 2 AbstractWebsite
n/a
Siao, M-D, Lin Y-C, He T, Tsai M-Y, Lee K-Y, Chang S-Y, Lin K-I, Lin Y-F, Chou M-Y, Suenaga K, Chiu P-W.  2021.  Embedment of Multiple Transition Metal Impurities into WS2 Monolayer for Bandstructure Modulation. Small. 17:2007171., Number 17 AbstractWebsite

Abstract Band structure by design in 2D layered semiconductors is highly desirable, with the goal to acquire the electronic properties of interest through the engineering of chemical composition, structure, defect, stacking, or doping. For atomically thin transition metal dichalcogenides, substitutional doping with more than one single type of transition metals is the task for which no feasible approach is proposed. Here, the growth of WS2 monolayer is shown codoped with multiple kinds of transition metal impurities via chemical vapor deposition controlled in a diffusion-limited mode. Multielement embedment of Cr, Fe, Nb, and Mo into the host lattice is exemplified. Abundant impurity states thus generate in the bandgap of the resultant WS2 and provide a robust switch of charging/discharging states upon sweep of an electric filed. A profound memory window exists in the transfer curves of doped WS2 field-effect transistors, forming the basis of binary states for robust nonvolatile memory. The doping technique presented in this work brings one step closer to the rational design of 2D semiconductors with desired electronic properties.

Zhang, H, Holbrook M, Cheng F, Nam H, Liu M, Pan C-R, West D, Zhang S, Chou M-Y, Shih C-K.  2021.  Epitaxial Growth of Two-Dimensional Insulator Monolayer Honeycomb BeO. ACS Nano. 15:2497-2505., Number 2 AbstractWebsite
n/a
Huang, Y-F, Liao K-W, Fahmi FRZ, Modak VA, Tsai S-H, Ke S-W, Wang C-H, Chen L-C, Chen K-H.  2021.  Thickness-Dependent Photocatalysis of Ultra-Thin MoS2 Film for Visible-Light-Driven CO2 Reduction. Catalysts. 11, Number 11 AbstractWebsite

The thickness of transition metal dichalcogenides (TMDs) plays a key role in enhancing their photocatalytic CO2 reduction activity. However, the optimum thickness of the layered TMDs that is required to achieve sufficient light absorption and excellent crystallinity has still not been definitively determined. In this work, ultra-thin molybdenum disulfide films (MoS2TF) with 25 nm thickness presented remarkable photocatalytic activity, and the product yield increased by about 2.3 times. The photocatalytic mechanism corresponding to the TMDs’ thickness was also proposed. This work demonstrates that the thickness optimization of TMDs provides a cogent direction for the design of high-performance photocatalysts.

2020
Pan, C-R, Lee W, Shih C-K, Chou MY.  2020.  Coherently coupled quantum-well states in bimetallic Pb/Ag thin films, Sep. Phys. Rev. B. 102:115428.: American Physical Society AbstractWebsite
n/a
Zhuo, K, Wang J, Gao J, Landman U, Chou M-Y.  2020.  Liquidlike Cu atom diffusion in weakly ionic compounds Cu2S and Cu2Se, Aug. Phys. Rev. B. 102:064201.: American Physical Society AbstractWebsite

n/a

Lee, W, Pan C-R, Nam H, Chou M-Y, Shih C-K.  2020.  Critical role of parallel momentum in quantum well state couplings in multi-stacked nanofilms: An angle resolved photoemission study, 2020. AIP AdvancesAIP Advances. 10(12):125211.: American Institute of Physics AbstractWebsite
n/a
Chang, M-C, Ho P-H, Tseng M-F, Lin F-Y, Hou C-H, Lin I-K, Wang H, Huang P-P, Chiang C-H, Yang Y-C, Wang I-T, Du H-Y, Wen C-Y, Shyue J-J, Chen C-W, Chen K-H, Chiu P-W, Chen L-C.  2020.  Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method, 2020. 11(1):3682. AbstractWebsite

Most chemical vapor deposition methods for transition metal dichalcogenides use an extremely small amount of precursor to render large single-crystal flakes, which usually causes low coverage of the materials on the substrate. In this study, a self-capping vapor-liquid-solid reaction is proposed to fabricate large-grain, continuous MoS2 films. An intermediate liquid phase-Na2Mo2O7 is formed through a eutectic reaction of MoO3 and NaF, followed by being sulfurized into MoS2. The as-formed MoS2 seeds function as a capping layer that reduces the nucleation density and promotes lateral growth. By tuning the driving force of the reaction, large mono/bilayer (1.1 mm/200 μm) flakes or full-coverage films (with a record-high average grain size of 450 μm) can be grown on centimeter-scale substrates. The field-effect transistors fabricated from the full-coverage films show high mobility (33 and 49 cm2 V−1 s−1 for the mono and bilayer regions) and on/off ratio (1 ~ 5 × 108) across a 1.5 cm × 1.5 cm region.

Billo, T, Shown I, kumar Anbalagan A, Effendi TA, Sabbah A, Fu F-Y, Chu C-M, Woon W-Y, Chen R-S, Lee C-H, Chen K-H, Chen L-C.  2020.  A mechanistic study of molecular CO2 interaction and adsorption on carbon implanted SnS2 thin film for photocatalytic CO2 reduction activity, 2020. 72:104717. AbstractWebsite

Gas-phase photocatalytic reactions to convert carbon dioxide and water into oxygen and hydrocarbons are the foundation of life on earth. However, the efficiency of photosynthesis is relatively low (~1%), which leaves much room for artificial photosynthesis to reach the benchmark of the solar cells (>15%). In this work, carbon implanted SnS2 thin films (C–SnS2) were prepared to study photocatalytic activity and adsorbate-catalyst surface interactions during CO2 photoreduction. The electron density distribution in C–SnS2 and its contribution toward the photogenerated charge transfer process has been analyzed by the angle-dependent X-ray absorption near-edge structure (XANES) study. The C–SnS2 surface affinity toward the CO2 molecule was monitored by in-situ dark current and Raman spectroscopy measurements. By optimizing the dose during ion implantation, SnS2 thin film with 1 wt% carbon incorporation shows 108 times enhancement in the CO2 conversion efficiency and more than 89% product selectivity toward CH4 formation compared with the as-grown SnS2 without carbon incorporation. The improved photocatalytic activity can be ascribed to enhanced light harvesting, pronounced charge-transfer between SnS2 and carbon with improved carrier separation and the availability of highly active carbon sites that serve as favorable CO2 adsorption sites.

Huang, W-F, Chang S-T, Huang H-C, Wang C-H, Chen L-C, Chen K-H, Lin MC.  2020.  On the Reduction of O2 on Cathode Surfaces of Co–Corrin and Co–Porphyrin: A Computational and Experimental Study on Their Relative Efficiencies in H2O/H2O2 Formation, 2020. The Journal of Physical Chemistry CThe Journal of Physical Chemistry C. 124(8):4652-4659.: American Chemical Society AbstractWebsite
n/a
Lien, H-T, Chang S-T, Chen P-T, Wong DP, Chang Y-C, Lu Y-R, Dong C-L, Wang C-H, Chen K-H, Chen L-C.  2020.  Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy, 2020. 11(1):4233. AbstractWebsite

Nonnoble metal catalysts are low-cost alternatives to Pt for the oxygen reduction reactions (ORRs), which have been studied for various applications in electrocatalytic systems. Among them, transition metal complexes, characterized by a redox-active single-metal-atom with biomimetic ligands, such as pyrolyzed cobalt–nitrogen–carbon (Co–Nx/C), have attracted considerable attention. Therefore, we reported the ORR mechanism of pyrolyzed Vitamin B12 using operando X-ray absorption spectroscopy coupled with electrochemical impedance spectroscopy, which enables operando monitoring of the oxygen binding site on the metal center. Our results revealed the preferential adsorption of oxygen at the Co2+ center, with end-on coordination forming a Co2+-oxo species. Furthermore, the charge transfer mechanism between the catalyst and reactant enables further Co–O species formation. These experimental findings, corroborated with first-principle calculations, provide insight into metal active-site geometry and structural evolution during ORR, which could be used for developing material design strategies for high-performance electrocatalysts for fuel cell applications.

Lee, T.-Y., JTLCVSTPK.  2020.  Carbon dot nanoparticles exert inhibitory effects on human platelets and reduce mortality in mice with acute pulmonary thromboembolism. AbstractWebsite

The inhibition of platelet activation is considered a potential therapeutic strategy for the treatment of arterial thrombotic diseases; therefore, maintaining platelets in their inactive state has garnered much attention. In recent years, nanoparticles have emerged as important players in modern medicine, but potential interactions between them and platelets remain to be extensively investigated. Herein, we synthesized a new type of carbon dot (CDOT) nanoparticle and investigated its potential as a new antiplatelet agent. This nanoparticle exerted a potent inhibitory effect in collagen-stimulated human platelet aggregation. Further, it did not induce cytotoxic effects, as evidenced in a lactate dehydrogenase assay, and inhibited collagen-activated protein kinase C (PKC) activation and Akt (protein kinase B), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) phosphorylation. The bleeding time, a major side-effect of using antiplatelet agents, was unaffected in CDOT-treated mice. Moreover, our CDOT could reduce mortality in mice with ADP-induced acute pulmonary thromboembolism. Overall, CDOT is effective against platelet activation in vitro via reduction of the phospholipase C/PKC cascade, consequently suppressing the activation of MAPK. Accordingly, this study affords the validation that CDOT has the potential to serve as a therapeutic agent for the treatment of arterial thromboembolic disorders. © 2020 by the authors.

Tsai, Y‐F, Wei P‐C, Chang L, Wang K‐K, Yang C‐C, Lai Y‐C, Hsing C‐R, Wei C‐M, He J, Snyder JG, Wu H‐J.  2020.  Compositional Fluctuations Locked by Athermal Transformation Yielding High Thermoelectric Performance in GeTe. Advanced Materials.