Tseng, T-Y, Chien C-H, Chu J-F, Huang W-C, Lin M-Y, Chang C-C, Chang T-C.
2013.
A specific fluorescent probe for visualizing G-quadruplex DNA by fluorescence lifetime imaging microscopy. J Biomed Opt.. 18(10):101309.
AbstractABSTRACT. The importance of guanine-quadruplex (G4) is not only in protecting the ends of chromosomes for human telomeres but also in regulating gene expression for several gene promoters. However, the existence of G4 structures in living cells is still in debate. A fluorescent probe, 3,6-bis(1-methyl-2-vinylpyridinium) carbazole diiodide (o-BMVC), for differentiating G4 structures from duplexes is characterized. o-BMVC has a large contrast in fluorescence decay time, binding affinity, and fluorescent intensity between G4 structures and duplexes, which makes it a good candidate for probing G4 DNA structures. The fluorescence decay time of o-BMVC upon interaction with G4 structures of telomeric G-rich sequences is ∼2.8 ns and that of interaction with the duplex structure of a calf thymus is ∼1.2 ns. By analyzing its fluorescence decay time and histogram, we were able to detect one G4 out of 1000 duplexes in vitro. Furthermore, by using fluorescence lifetime imaging microscopy, we demonstrated an innovative methodology for visualizing the localization of G4 structures as well as mapping the localization of different G4 structures in living cells.
Chou, JP, Hsing CR, Wei CM, Cheng C, Chang CM.
2013.
Ab-initio Random Structure Search for 13-atom clusters of fcc elements. JOURNAL OF PHYSICS-CONDENSED MATTER. 25:125305.
AbstractThe 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd13 and Au13, we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au13, which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons.
Hsu, M-Y, Tsai P-Y, Wei Z-R, Chao M-H, Zhang B, Kasai T, Lin K-C.
2013.
Competitive bond rupture in the photodissociation of bromoacetyl chloride and 2- and 3-bromopropionyl chloride: Adiabatic versus diabatic dissociation. ChemPhysChem. 14:936-945., Number 5
AbstractCompetitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the 1[n(O) →π*(Cï£O)] transition at 234-235 nm are investigated. Branching ratios for C-Br/C-Cl bond fission are found by using the (2+1) resonance-enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the Cï£O chromophore. C-Cl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(Cï£O) and np(Cl)σ*(C-Cl) bands. In contrast, C-Br bond fission is subject to much weaker coupling between n(O)π*(Cï£O) and np(Br)σ*(C-Br). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride, which leads to excited-state products. For 3-bromopropionyl chloride, the available energy is not high enough to reach the excited-state products such that C-Br bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted. Busted open: Insight into the mechanisms causing C-Cl and C-Br bond fission of bromoacetyl chloride and 2- and 3-bromopropionyl chloride by following the 1[n(O) →π*(Cï£O)] transition is obtained. The figure shows the center-of-mass translational energy distributions of ground-state Br formation through a diabatic pathway for the dissociation of 2-bromopropionyl chloride. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hamashima, T, Li Y-C, Wu MCH, Mizuse K, Kobayashi T, Fujii A, Kuo J-L.
2013.
Folding of the Hydrogen Bond Network of H+(CH3OH)7 with Rare Gas Tagging. The Journal of Physical Chemistry A. 117:101-107., Number 1
AbstractA number of isomer structures can be formed in hydrogen-bonded clusters, reflecting the essential variety of structural motifs of hydrogen bond networks. Control of isomer distribution of a cluster is important not only in practical use for isomer-specific spectroscopy but also in understanding of isomerization processes of hydrogen bond networks. Protonated methanol clusters have relatively simple networks and they are model systems suitable to investigate isomer distribution changes. In this paper, isomer distribution of H+(CH3OH)7 is studied by size-selective infrared spectroscopy in the OH and CH stretching vibrational region and density functional theory calculations. While the clusters produced by a supersonic jet expansion combined with electron ionization were predominantly isomers having open hydrogen bond networks such as a linear chain, the Ar or Ne attachment (so-called rare gas tagging) entirely switches the isomer structures to compactly folded ones, which are composed only of closed multiple rings. The origin of the isomer switching is discussed in terms of thermal effects and specific isomer preference.
Hu, E-L, Tsai P-Y, Fan H, Lin K-C.
2013.
Photodissociation of gaseous CH3COSH at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Observation of three dissociation channels. Journal of Chemical Physics. 138, Number 1
AbstractUpon one-photon excitation at 248 nm, gaseous CH3C(O)SH is dissociated following three pathways with the products of (1) OCS + CH 4, (2) CH3SH + CO, and (3) CH2CO + H 2S that are detected using time-resolved Fourier-transform infrared emission spectroscopy. The excited state 1(nO, π *CO) has a radiative lifetime of 249 ± 11 ns long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of collision-induced internal conversion is estimated to be 1.1 × 10-10 cm3 molecule -1 s-1. Among the primary dissociation products, a fraction of the CH2CO moiety may undergo further decomposition to CH2 + CO, of which CH2 is confirmed by reaction with O2 producing CO2, CO, OH, and H2CO. Such a secondary decomposition was not observed previously in the Ar matrix-isolated experiments. The high-resolution spectra of CO are analyzed to determine the ro-vibrational energy deposition of 8.7 ± 0.7 kcal/mol, while the remaining primary products with smaller rotational constants are recognized but cannot be spectrally resolved. The CO fragment detected is mainly ascribed to the primary production. A prior distribution method is applied to predict the vibrational distribution of CO that is consistent with the experimental findings. © 2013 American Institute of Physics.