Quantum Monte Carlo investigations of adsorption energetics on graphene

Citation:
Hsing, CR, Wei CM, Chou MY.  2012.  Quantum Monte Carlo investigations of adsorption energetics on graphene, Oct. Journal of Physics-Condensed Matter. 24:7., Number 39

Abstract:

We have performed calculations of adsorption energetics on the graphene surface using the state-of-the-art diffusion quantum Monte Carlo method. Two types of configurations are considered in this work: the adsorption of a single O, F, or H atom on the graphene surface and the H-saturated graphene system (graphane). The adsorption energies are compared with those obtained from density functional theory with various exchange-correlation functionals. The results indicate that the approximate exchange-correlation functionals significantly overestimate the binding of O and F atoms on graphene, although the preferred adsorption sites are consistent. The energy errors are much less for atomic hydrogen adsorbed on the surface. We also find that a single O or H atom on graphene has a higher energy than in the molecular state, while the adsorption of a single F atom is preferred over the gas phase. In addition, the energetics of graphane is reported. The calculated equilibrium lattice constant turns out to be larger than that of graphene, at variance with a recent experimental suggestion.

Notes:

ISI Document Delivery No.: 007APTimes Cited: 0Cited Reference Count: 37Cited References: ANDERSON JB, 1976, J CHEM PHYS, V65, P4121, DOI 10.1063/1.432868 Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710] BENNETT AJ, 1971, PHYS REV B, V3, P1397, DOI 10.1103/PhysRevB.3.1397 Boukhvalov D.W., 2008, Physical Review B (Condensed Matter and Materials Physics), V77, DOI 10.1103/PhysRevB.77.035427 Casolo S, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.205412 Casolo S, 2009, J CHEM PHYS, V130, DOI 10.1063/1.3072333 Casula M, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.161102 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 Chan KT, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.235430 Clark SJ, 2005, Z KRISTALLOGR, V220, P567, DOI 10.1524/zkri.220.5.567.65075 Drummond ND, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.235119 Duplock EJ, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.225502 Elias DC, 2009, SCIENCE, V323, P610, DOI 10.1126/science.1167130 Foulkes WMC, 2001, REV MOD PHYS, V73, P33, DOI 10.1103/RevModPhys.73.33 Giannozzi P., 2009, J PHYS-CONDENS MAT, V21, P1, DOI DOI 10.1088/0953-8984/21/39/395502 Grinberg I, 2002, J CHEM PHYS, V117, P2264, DOI 10.1063/1.1488596 Grossman JC, 2002, J CHEM PHYS, V117, P1434, DOI 10.1063/1.1487829 KATO T, 1957, COMMUN PUR APPL MATH, V10, P151, DOI 10.1002/cpa.3160100201 Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0 KRESSE G, 1994, PHYS REV B, V49, P14251, DOI 10.1103/PhysRevB.49.14251 Loh KP, 2010, J MATER CHEM, V20, P2277, DOI 10.1039/b920539j Needs RJ, 2010, J PHYS-CONDENS MAT, V22, DOI 10.1088/0953-8984/22/2/023201 PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 PERDEW JP, 1992, PHYS REV B, V46, P6671, DOI 10.1103/PhysRevB.46.6671 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 POPLE JA, 1989, J CHEM PHYS, V90, P5622, DOI 10.1063/1.456415 RAJAGOPAL G, 1995, PHYS REV B, V51, P10591, DOI 10.1103/PhysRevB.51.10591 Reynolds R J, 1982, J CHEM PHYS, V77, P5593 Robinson JT, 2010, NANO LETT, V10, P3001, DOI 10.1021/nl101437p Sha X, 2001, SURF SCI, V496, P318 Sofo JO, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.153401 UMRIGAR CJ, 1993, J CHEM PHYS, V99, P2865, DOI 10.1063/1.465195 Umrigar C J, 2007, Phys Rev Lett, V98, P110201, DOI 10.1103/PhysRevLett.98.110201 UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719, DOI 10.1103/PhysRevLett.60.1719 Xiang HJ, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.035416 YIN MT, 1984, PHYS REV B, V29, P6996, DOI 10.1103/PhysRevB.29.6996 Zhang YK, 1998, PHYS REV LETT, V80, P890, DOI 10.1103/PhysRevLett.80.890Hsing, C. R. Wei, C. M. Chou, M. Y.Chou, Mei-Yin/D-3898-2012National Science Council of Taiwan [99-2112-M001-034-MY3]; National Center for Theoretical Sciences (NCTS) in Taiwan; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-97ER45632]CMW acknowledges support from the National Science Council of Taiwan under Grant No. 99-2112-M001-034-MY3. CRH and CMW acknowledges support from the National Center for Theoretical Sciences (NCTS) in Taiwan. MYC acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-97ER45632.Iop publishing ltdBristol

Website