Publications

Export 170 results:
Sort by: Author Title Type [ Year  (Asc)]
2014
Weng, SC, Xu RQ, Said AH, Leu BM, Ding Y, Hong H, Fang XY, Chou MY, Bosak A, Abbamonte P, Cooper SL, Fradkin E, Chang SL, Chiang TC.  2014.  Pressure-induced antiferrodistortive phase transition in SrTiO3: Common scaling of soft-mode with pressure and temperature. Epl. 107:5. AbstractWebsite
n/a
Zhang, F, Wood BC, Wang Y, Wang CZ, Ho KM, Chou MY.  2014.  Ultrafast Bulk Diffusion of AlHx in High-Entropy Dehydrogenation Intermediates of NaAlH4. Journal of Physical Chemistry C. 118:18356-18361. AbstractWebsite
n/a
Zhang, WJ, Chuu CP, Huang JK, Chen CH, Tsai ML, Chang YH, Liang CT, Chen YZ, Chueh YL, He JH, Chou MY, Li LJ.  2014.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Scientific Reports. 4:8. AbstractWebsite
n/a
2015
Chen, P, Chan Y-H, Fang X-Y, Zhang Y, Chou MY, Mo S-K, Hussain Z, Fedorov A-V, Chiang T-C.  2015.  Charge density wave transition in single-layer titanium diselenide. Nature Communications. 6 Abstract
n/a
Chiu, M-H, Zhang C, Shiu H-W, Chuu C-P, Chen C-H, Chang C-YS, Chen C-H, Chou M-Y, Shih C-K, Li L-J.  2015.  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature Communications. 6 Abstract
n/a
Natterer, FD, Zhao Y, Wyrick J, Chan Y-H, Ruan W-Y, Chou M-Y, Watanabe K, Taniguchi T, Zhitenev NB, Stroscio JA.  2015.  Strong Asymmetric Charge Carrier Dependence in Inelastic Electron Tunneling Spectroscopy of Graphene Phonons. Physical Review Letters. 114, Number 24 Abstract
n/a
2016
Zhang, Q, Chen Y, Zhang C, Pan C-R, Chou MY, Zeng C, Shih C-K.  2016.  Band gap renormalization and work function modulation in MoSe2/hBN/Ru(0001) heterostructures. Nature Communications. 7(13843)
Chan, Y-H, Chiu C-K, Chou MY, Schnyder AP.  2016.  Ca3P2 and other topological semimetals with line nodes and drumhead surface states. PHYSICAL REVIEW B. 93(20):205132/1-16.
Chen, P, Chan Y-H, Wong M-H, Fang X-Y, Chou MY, Mo S-K, Hussain Z, Fedorov A-V, Chiang T-C.  2016.  Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe2. NANO LETTERS. 16(10):6331-6336.
Chen, P, Chan Y-H, Fang X-Y, Mo S-K, Hussain Z, Fedorov A-V, Chou MY, Chiang T-C.  2016.  Hidden Order and Dimensional Crossover of the Charge Density Waves in TiSe2. SCIENTIFIC REPORTS. 6:37910.
Feng, B, Chan Y-H, Feng Y, Liu R-Y, Chou MY, Kuroda K, Yaji K, Harasawa A, Moras P, Barinov A, Malaeb WG, Bareille C, Kondo T, Shin S, Komori F, Chiang T-C, Shi Y, Matsuda I.  2016.  Spin Texture in Type II Weyl Semimetal WTe2. PHYSICAL REVIEW B. 94(19):195134.
Chen, F-W, Chou MY, Chen Y-R, Wu Y-S.  2016.  Theory of valley-dependent transport in graphene-based lateral quantum structures. PHYSICAL REVIEW B. 94(7):075407.
2017
Nunna, R, Qiu P, Yin M, Chen H, Hanus R, Song Q, Zhang T, Chou M-Y, Agne MT, He J, Snyder JG, Shi X, Chen L.  2017.  Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs. Energy Environ. Sci.. 10:1928-1935.: The Royal Society of Chemistry AbstractWebsite

Here{,} by utilizing the special interaction between metal Cu and multi-walled carbon nanotubes (CNTs){,} we have successfully realized the in situ growth of Cu2Se on the surface of CNTs and then fabricated a series of Cu2Se/CNT hybrid materials. Due to the high degree of homogeneously dispersed molecular CNTs inside the Cu2Se matrix{,} a record-high thermoelectric figure of merit zT of 2.4 at 1000 K has been achieved.

Xu, C-Z, Cha Y-H, Chen Y, Chen P, Wang X, Dejoie C, Wong M-H, Hlevyack JA, Ryu H, Kee H-Y, Tamura N, Chou M-Y, Hussain Z, Mo S-K, Chiang T-C.  2017.  Elemental Topological Dirac Semimetal: α-Sn on InSb(111). Physical Review Letters. 118(146402)
Zhang, C, Chuu C-P, Ren X, Li M-Y, Li L-J, Jin C, Chou MY, Shih C-K.  2017.  Interlayer Couplings, Moiré Patterns, and 2D Electronic Superlattices in MoS2/WSe2 Hetero-bilayers. Science Advances.
Lu, A-Y, Zhu H, Xiao J, Chuu C-P, Chiu M-H, Cheng C-C, Yang C-W, Wei K-H, Dimosthenis S, Nordlund D, Chou M-Y, Zhang X, Li L-J.  2017.  Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology. (12):744-749.
Tsai, Y, Chu Z, Han Y, Chuu C-P, Wu D, Johnson A, Cheng F, Chou M-Y, Muller DA, Li X, Lai K, Shih C-K.  2017.  Tailoring Semiconductor Lateral Multijunctions for Giant Photoconductivity Enhancement. Advanced Materials. :1703680–n/a. AbstractWebsite

n/a

Chen, P, Pai WW, Chan Y-H, Takayama A, Xu C-Z, Karn A, Hasegawa S, Chou MY, Mo S-K, Fedorov A-V, Chiang T-C.  2017.  Emergence of charge density waves and a pseudogap in single-layer TiTe2, 2017. 8(1):516. AbstractWebsite

Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe2, despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.

Zhang, D, Ha J, Baek H, Chan Y-H, Natterer FD, Myers AF, Schumacher JD, Cullen WG, Davydov AV, Kuk Y, Chou MY, Zhitenev NB, Stroscio JA.  2017.  Strain Engineering a 4a×√3a Charge Density Wave Phase in Transition Metal Dichalcogenide 1T-VSe2, Jul. Phys. Rev. Materials. 1:024005.: American Physical Society AbstractWebsite
n/a
2018
Lin, Y-C, Yeh C-H, Lin H-C, Siao M-D, Liu Z, Nakajima H, Okazaki T, Chou M-Y, Suenaga K, Chiu P-W.  2018.  Stable 1T Tungsten Disulfide Monolayer and Its Junctions: Growth and Atomic Structures. ACS Nano. 12:12080-12088., Number 12 AbstractWebsite
n/a
Flötotto, D, Bai Y, Chan Y-H, Chen P, Wang X, Rossi P, Xu C-Z, Zhang C, Hlevyack JA, Denlinger JD, Hong H, Chou M-Y, Mittemeijer EJ, Eckstein JN, Chiang T-C.  2018.  In Situ Strain Tuning of the Dirac Surface States in Bi2Se3 Films, 2018. Nano LettersNano Letters. 18(9):5628-5632.: American Chemical Society AbstractWebsite
n/a
Chen, P, Pai WW, Chan Y-H, Sun W-L, Xu C-Z, Lin D-S, Chou MY, Fedorov A-V, Chiang T-C.  2018.  Large quantum-spin-Hall gap in single-layer 1T′ WSe2, 2018. 9(1):2003. AbstractWebsite

Two-dimensional (2D) topological insulators (TIs) are promising platforms for low-dissipation spintronic devices based on the quantum-spin-Hall (QSH) effect, but experimental realization of such systems with a large band gap suitable for room-temperature applications has proven difficult. Here, we report the successful growth on bilayer graphene of a quasi-freestanding WSe2 single layer with the 1T′ structure that does not exist in the bulk form of WSe2. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we observe a gap of 129 meV in the 1T′ layer and an in-gap edge state located near the layer boundary. The system′s 2D TI characters are confirmed by first-principles calculations. The observed gap diminishes with doping by Rb adsorption, ultimately leading to an insulator–semimetal transition. The discovery of this large-gap 2D TI with a tunable band gap opens up opportunities for developing advanced nanoscale systems and quantum devices.

Lin, K-S, Chou M-Y.  2018.  Topological Properties of Gapped Graphene Nanoribbons with Spatial Symmetries, 2018. Nano LettersNano Letters. 18(11):7254-7260.: American Chemical Society AbstractWebsite
n/a
Zhang, Q, Yu J, Ebert P, Zhang C, Pan C-R, Chou M-Y, Shih C-K, Zeng C, Yuan S.  2018.  Tuning Band Gap and Work Function Modulations in Monolayer hBN/Cu(111) Heterostructures with Moiré Patterns, 2018. ACS NanoACS Nano. 12(9):9355-9362.: American Chemical Society AbstractWebsite
n/a
Xu, C-Z, Chan Y-H, Chen P, Wang X, Flötotto D, Hlevyack JA, Bian G, Mo S-K, Chou M-Y, Chiang T-C.  2018.  Gapped electronic structure of epitaxial stanene on InSb(111), Jan. Phys. Rev. B. 97:035122.: American Physical Society AbstractWebsite
n/a