Lattice dynamics and thermodynamic properties of NaAlH(4): Density-functional calculations using a linear response theory

Citation:
Peles, A, Chou MY.  2006.  Lattice dynamics and thermodynamic properties of NaAlH(4): Density-functional calculations using a linear response theory, May. Physical Review B. 73:11., Number 18

Abstract:

We present a first-principles investigation of the lattice dynamics and thermodynamical properties of a complex hydride NaAlH(4), a promising material for hydrogen storage. The calculations are performed within the density-functional-theory framework and using a linear response theory. Calculations of the phonon spectrum, Born effective charges Z(*), and dielectric constants in high and low frequency limits are reported. The mode characters of the zone-center phonons, including the LO-TO splitting, are identified and compared to the experiment. The quasiharmonic approach is used to study thermal expansion as well as the mean square displacement of each atom as a function of temperature. A connection is established between the latter and the melting point. The inclusion of the zero-point motion leads to an expanded lattice compared to the static lattice, while the low frequency oscillations are found to play an important role in the melting and decomposition of NaAlH(4).

Notes:

ISI Document Delivery No.: 048MDTimes Cited: 14Cited Reference Count: 33Cited References: Gomes S, 2005, J ALLOY COMPD, V390, P305, DOI 10.1016/j.jallcom.2004.08.036 Ke XZ, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.024117 Majzoub EH, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.024118 Peles A, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.165105 Iniguez J, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.060101 Ozolins V, 2004, J ALLOY COMPD, V375, P1, DOI 10.1016/j.jallcom.2003.11.154 Ross DJ, 2004, CHEM PHYS LETT, V388, P430, DOI 10.1016/j.cplett.2004.03.039 Aguayo A, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.155103 Hauback BC, 2003, J ALLOY COMPD, V358, P142, DOI 10.1016/S0925-8388(03)00136-1 Opalka SM, 2003, J ALLOY COMPD, V356, P486, DOI 10.1016/S0925-8388(03)00364-5 Vajeeston P, 2003, APPL PHYS LETT, V82, P2257, DOI 10.1063/1.1566086 ZUTTEL A, 2003, MATER TODAY, V6, P24, DOI 10.1016/S1369-7021(03)00922-2 Gonze X, 2002, COMP MATER SCI, V25, P478, DOI 10.1016/S0927-0256(02)00325-7 Schlapbach L, 2001, NATURE, V414, P353, DOI 10.1038/35104634 Jensen CM, 2001, APPL PHYS A-MATER, V72, P213, DOI 10.1007/s003390100784 Gross KJ, 2000, J ALLOY COMPD, V297, P270, DOI 10.1016/S0925-8388(99)00598-8 Bogdanovic B, 1997, J ALLOY COMPD, V253, P1, DOI 10.1016/S0925-8388(96)03049-6 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 PULLUMBI P, 1994, J CHEM PHYS, V101, P3610, DOI 10.1063/1.467546 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 BELSKII VK, 1983, RUSS J INORG CHEM, V28, P1528 LOUIE SG, 1982, PHYS REV B, V26, P1738, DOI 10.1103/PhysRevB.26.1738 BONNETOT B, 1980, J CHEM THERMODYN, V12, P249, DOI 10.1016/0021-9614(80)90043-9 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 LAUHER JW, 1979, ACTA CRYSTALLOGR B, V35, P1454, DOI 10.1107/S0567740879006701 SHIRK AE, 1973, J AM CHEM SOC, V95, P5904, DOI 10.1021/ja00799a013 TEMME FP, 1973, J CHEM SOC FARAD T 2, V69, P783, DOI 10.1039/f29736900783 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 BORN M, 1954, DYNAMICAL THEORY CRY HERZBERG G, 1945, MOLECULAR SPECTRA MO, V2, P100 LINDEMANN FA, 1910, Z PHYS, V11, P609 LOVVIK OM, IN PRESS J MAT RESPeles, A. Chou, M. Y.AMER PHYSICAL SOCCOLLEGE PK

Website