ENERGETICS OF THE SI(111) AND GE(111) SURFACES AND THE EFFECT OF STRAIN

Citation:
Mercer, JL, Chou MY.  1993.  ENERGETICS OF THE SI(111) AND GE(111) SURFACES AND THE EFFECT OF STRAIN, Aug. Physical Review B. 48:5374-5385., Number 8

Abstract:

Using tight-binding models, the energies of a number of silicon and germanium (111) surfaces are studied. These include reconstructed surfaces with dimers and stacking faults (DS), simple adatom surfaces such as 2x2 and c(2x8), and more complicated cases with dimers, adatoms, and stacking faults (DAS). For reconstructed surfaces containing adatoms, it is found that a simple correction term dependent on the adatom concentration is needed in the present total-energy model to account for the unusual geometry. Similarities between the silicon and germanium reconstructions are seen and compare well with ab initio results. There are also some differences between silicon and germanium, for example, the DS surfaces are lower in energy than the relaxed (1x1) for silicon, but higher for germanium. Si(111) reconstructs into the DAS structure while Ge(111) goes to the simple adatom c(2x8) surface. The c(2x8), 7x7 DAS, (1x1), and 7x7 DS surface reconstructions of Ge(111) were studied with in-plane strain. For these surfaces, a strain of about 2% was sufficient to make the 7x7 DAS/DS surface lower in energy than the c(2x8)/(1x1) surface. An analysis of the energy per atom showed that the dimer-row and associated first-layer atoms played a major part in the differing energy behavior, in agreement with an earlier proposal. An expansive strain was applied to the 2x2, 7x7 DAS, (1x1), and 7x7 DS surface reconstructions of Si(111). With a strain of about 2.5% the adatom surfaces switched relative energies, while the adatom free surfaces required only about 1.5% strain. As for germanium, the dimer-row and associated atoms were of major importance in the differing energy change.

Notes:

ISI Document Delivery No.: LV385Times Cited: 21Cited Reference Count: 42Cited References: MERCER JL, 1993, PHYS REV B, V47, P9366, DOI 10.1103/PhysRevB.47.9366 TAKEUCHI N, 1992, PHYS REV LETT, V69, P648, DOI 10.1103/PhysRevLett.69.648 BALAMANE H, 1992, PHYS REV B, V46, P2250, DOI 10.1103/PhysRevB.46.2250 BROMMER KD, 1992, PHYS REV LETT, V68, P1355, DOI 10.1103/PhysRevLett.68.1355 STICH I, 1992, PHYS REV LETT, V68, P1351, DOI 10.1103/PhysRevLett.68.1351 KLITSNER T, 1991, PHYS REV LETT, V67, P3800, DOI 10.1103/PhysRevLett.67.3800 TAKEUCHI N, 1991, PHYS REV B, V44, P13611, DOI 10.1103/PhysRevB.44.13611 BATRA IP, 1990, PHYS REV B, V41, P5048, DOI 10.1103/PhysRevB.41.5048 PAYNE MC, 1989, J PHYS-CONDENS MAT, V1, pSB63, DOI 10.1088/0953-8984/1/SB/012 MEADE RD, 1989, PHYS REV B, V40, P3905, DOI 10.1103/PhysRevB.40.3905 JONES RO, 1989, REV MOD PHYS, V61, P689, DOI 10.1103/RevModPhys.61.689 WANG CZ, 1989, PHYS REV B, V39, P8586, DOI 10.1103/PhysRevB.39.8586 BECKER RS, 1989, PHYS REV B, V39, P1633, DOI 10.1103/PhysRevB.39.1633 FEIDENHANSL R, 1988, PHYS REV B, V38, P9715, DOI 10.1103/PhysRevB.38.9715 VANDERBILT D, 1988, STRUCTURE SURFACES, V2, P276 VANDERBILT D, 1987, PHYS REV B, V36, P6209, DOI 10.1103/PhysRevB.36.6209 VANDERBILT D, 1987, PHYS REV LETT, V59, P1456, DOI 10.1103/PhysRevLett.59.1456 QIAN GX, 1987, PHYS REV B, V35, P1288, DOI 10.1103/PhysRevB.35.1288 NORTHRUP JE, 1986, PHYS REV LETT, V57, P154, DOI 10.1103/PhysRevLett.57.154 MCRAE EG, 1986, SURF SCI, V165, P191, DOI 10.1016/0039-6028(86)90669-2 TAKAYANAGI K, 1985, SURF SCI, V164, P367, DOI 10.1016/0039-6028(85)90753-8 DICENZO SB, 1985, PHYS REV B, V31, P2330, DOI 10.1103/PhysRevB.31.2330 GOSSMANN HJ, 1985, PHYS REV LETT, V55, P1106, DOI 10.1103/PhysRevLett.55.1106 TAKAYANAGI K, 1985, J VAC SCI TECHNOL A, V3, P1502, DOI 10.1116/1.573160 CHADI DJ, 1984, PHYS REV B, V29, P785, DOI 10.1103/PhysRevB.29.785 GOSSMANN HJ, 1984, SURF SCI, V138, pL175, DOI 10.1016/0167-2584(84)90372-4 NORTHRUP JE, 1983, PHYS REV B, V27, P6553, DOI 10.1103/PhysRevB.27.6553 SHOJI K, 1983, JPN J APPL PHYS 2, V22, pL200, DOI 10.1143/JJAP.22.L200 NORTHRUP JE, 1982, PHYS REV LETT, V49, P1349, DOI 10.1103/PhysRevLett.49.1349 NORTHRUP JE, 1982, J VAC SCI TECHNOL, V21, P333, DOI 10.1116/1.571774 PANDEY KC, 1982, PHYS REV LETT, V49, P223, DOI 10.1103/PhysRevLett.49.223 YIN MT, 1982, PHYS REV B, V26, P5668, DOI 10.1103/PhysRevB.26.5668 CHADI DJ, 1981, PHYS REV B, V23, P1843, DOI 10.1103/PhysRevB.23.1843 ICHIKAWA T, 1981, SURF SCI, V105, P395, DOI 10.1016/0039-6028(81)90008-X NORTHRUP JE, 1981, PHYS REV LETT, V47, P1910, DOI 10.1103/PhysRevLett.47.1910 PANDEY KC, 1981, PHYS REV LETT, V47, P1913, DOI 10.1103/PhysRevLett.47.1913 YIN MT, 1981, PHYS REV B, V24, P2303, DOI 10.1103/PhysRevB.24.2303 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 CHADI DJ, 1978, PHYS REV LETT, V41, P1062, DOI 10.1103/PhysRevLett.41.1062 DONOHUE J, 1974, STRUCTURES ELEMENTS LANDER JJ, 1963, J APPL PHYS, V34, P2298, DOI 10.1063/1.1702734 Feynman RP, 1939, PHYS REV, V56, P340, DOI 10.1103/PhysRev.56.340MERCER, JL CHOU, MYAMER PHYSICAL SOCCOLLEGE PK

Website