ENERGETICS AND LATTICE CONTRACTION OF BETA-PHASE YH2+X

Citation:
Wang, Y, Chou MY.  1994.  ENERGETICS AND LATTICE CONTRACTION OF BETA-PHASE YH2+X, Apr. Physical Review B. 49:10731-10734., Number 15

Abstract:

The cubic YH2+x system with an extended hydrogen composition is studied using the pseudopotential method and the local-density-functional approximation with a plane-wave basis. The study focuses on the beta phase with the metal atoms forming a face-centered-cubic lattice and the octahedral sites partially occupied by hydrogen for 0 < x < 1. The self-consistent total-energy calculation is performed by employing the supercell modeling method. The structural property, in particular, the volume contraction with increasing x, is investigated by analyzing the energy changes for different site occupation. It is found that the lattice contracts mainly to increase the interaction of the additional electron and the metal d potential. In addition, the (420)-plane ordering of the x-excess hydrogen is examined for YH2.25 and is confirmed by energetics studies.

Notes:

ISI Document Delivery No.: NJ756Times Cited: 15Cited Reference Count: 37Cited References: WANG Y, 1993, PHYS REV LETT, V71, P1226, DOI 10.1103/PhysRevLett.71.1226 FUKAI Y, 1993, METAL HYDROGEN SYSTE ANDRE G, 1992, PHYS REV B, V46, P8644, DOI 10.1103/PhysRevB.46.8644 DAOU JN, 1992, PHYS REV B, V45, P10907, DOI 10.1103/PhysRevB.45.10907 WANG Y, 1991, PHYS REV B, V44, P10339, DOI 10.1103/PhysRevB.44.10339 LU ZW, 1991, PHYS REV B, V44, P512, DOI 10.1103/PhysRevB.44.512 VAJDA P, 1991, PHYS REV LETT, V66, P3176, DOI 10.1103/PhysRevLett.66.3176 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 SHINAR J, 1990, PHYS REV LETT, V64, P563, DOI 10.1103/PhysRevLett.64.563 MANCHESTER FD, 1990, METAL HYDROGEN SYSTE MIN BJ, 1989, PHYS REV B, V40, P7532, DOI 10.1103/PhysRevB.40.7532 SHINAR J, 1988, PHYS REV B, V37, P2066, DOI 10.1103/PhysRevB.37.2066 VAJDA P, 1987, PHYS REV B, V36, P8669, DOI 10.1103/PhysRevB.36.8669 WEI SH, 1987, PHYS REV B, V36, P4163, DOI 10.1103/PhysRevB.36.4163 FU CL, 1983, PHYS REV B, V28, P5480, DOI 10.1103/PhysRevB.28.5480 KULIKOV NI, 1982, J LESS-COMMON MET, V88, P307, DOI 10.1016/0022-5088(82)90238-7 MISEMER DK, 1982, PHYS REV B, V26, P5634, DOI 10.1103/PhysRevB.26.5634 FUJIMORI A, 1981, J PHYS C SOLID STATE, V14, P1427 FUJIMORI A, 1980, PHYS REV B, V22, P3573, DOI 10.1103/PhysRevB.22.3573 GUPTA M, 1980, PHYS REV B, V22, P6074, DOI 10.1103/PhysRevB.22.6074 IHM J, 1979, J PHYS C SOLID STATE, V12, P4409, DOI 10.1088/0022-3719/12/21/009 KULIKOV I, 1979, Z PHYS CHEM, V117, P113 PETERMAN DJ, 1979, PHYS REV B, V19, P4867, DOI 10.1103/PhysRevB.19.4867 PETERMAN DJ, 1979, PHYS REV B, V20, P5313, DOI 10.1103/PhysRevB.20.5313 BEAUDRY BJ, 1978, HDB PHYSICS CHEM RAR GUPTA M, 1978, SOLID STATE COMMUN, V27, P1355, DOI 10.1016/0038-1098(78)91571-5 LIBOWITZ GG, 1972, PHYS REV B, V6, P4540, DOI 10.1103/PhysRevB.6.4540 SWITENDICK AC, 1971, INT J QUANTUM CHEM, V5, P459 SWITENDI.AC, 1970, SOLID STATE COMMUN, V8, P1463, DOI 10.1016/0038-1098(70)90720-9 ANDERSON OL, 1966, J PHYS CHEM SOLIDS, V27, P547, DOI 10.1016/0022-3697(66)90199-5 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 MANSMANN M, 1964, J PHYS-PARIS, V25, P454, DOI 10.1051/jphys:01964002505045400 PEBLER A, 1962, J PHYS CHEM-US, V66, P148, DOI 10.1021/j100807a033 Murnaghan FD, 1944, P NATL ACAD SCI USA, V30, P244, DOI 10.1073/pnas.30.9.244 Wigner E, 1934, PHYS REV, V46, P1002, DOI 10.1103/PhysRev.46.1002 SUN SJ, IN PRESS PHYS REV BWANG, Y CHOU, MYAMERICAN PHYSICAL SOCCOLLEGE PK

Website