Electronic and vibrational properties of gamma-AlH(3)

Citation:
Wang, Y, Yan JA, Chou MY.  2008.  Electronic and vibrational properties of gamma-AlH(3), Jan. Physical Review B. 77:8., Number 1

Abstract:

Aluminum hydride (alane) AlH(3) is an important material in hydrogen storage applications. It is known that AlH(3) exists in multiply forms of polymorphs, where alpha-AlH(3) is found to be the most stable with a hexagonal structure. Recent experimental studies on gamma-AlH(3) reported an orthorhombic structure with a unique double-bridge bond between certain Al and H atoms. This was not found in alpha-AlH(3) or other polymorphs. Using density functional theory, we have investigated the energetics, and the structural, electronic, and phonon vibrational properties for the newly reported gamma-AlH(3) structure. The current calculation concludes that gamma-AlH(3) is less stable than alpha-AlH(3) by 1.2 KJ/mol, with the zero-point energy included. Interesting binding features associated with the unique geometry of gamma-AlH(3) are discussed from the calculated electronic properties and phonon vibrational modes. The binding of H-s with higher energy Al-p,d orbitals is enhanced within the double-bridge arrangement, giving rise to a higher electronic energy for the system. Distinguishable new features in the vibrational spectrum of gamma-AlH(3) were attributed to the double-bridge and hexagonal-ring structures.

Notes:

ISI Document Delivery No.: 258ISTimes Cited: 9Cited Reference Count: 25Cited References: Brinks HW, 2007, J ALLOY COMPD, V441, P364, DOI 10.1016/j.jallcom.2006.09.139 Yartys VA, 2007, INORG CHEM, V46, P1051, DOI 10.1021/ic0617487 van Setten MJ, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.035204 Graetz J, 2006, J ALLOY COMPD, V424, P262, DOI 10.1016/j.jallcom.2005.11.086 Graetz J, 2005, J PHYS CHEM B, V109, P22181, DOI 10.1021/jp0546960 Ke XZ, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.184107 SANDROCK G, 2005, J APPL PHYS A, V80, P687 Wolverton C, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.144109 Baroni S, 2001, REV MOD PHYS, V73, P515, DOI 10.1103/RevModPhys.73.515 Kresse G, 1996, PHYS REV B, V54, P11169, DOI 10.1103/PhysRevB.54.11169 Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0 PERDEW JP, 1992, PHYS REV B, V46, P6671, DOI 10.1103/PhysRevB.46.6671 VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 BARANOWSKI B, 1983, Z PHYS CHEM NEUE FOL, V135, P27 HERLEY PJ, 1981, J PHYS CHEM-US, V85, P1887, DOI 10.1021/j150613a022 HERLEY PJ, 1981, J PHYS CHEM-US, V85, P1874, DOI 10.1021/j150613a020 HERLEY PJ, 1981, J PHYS CHEM-US, V85, P1882, DOI 10.1021/j150613a021 HERLEY PJ, 1980, J SOLID STATE CHEM, V35, P391, DOI 10.1016/0022-4596(80)90537-X HERLEY PJ, 1978, J PHYS CHEM SOLIDS, V39, P1013, DOI 10.1016/0022-3697(78)90119-1 BROWER FM, 1976, J AM CHEM SOC, V98, P2450, DOI 10.1021/ja00425a011 MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI 10.1103/PhysRevB.13.5188 TURLEY JW, 1969, INORG CHEM, V8, P18, DOI 10.1021/ic50071a005 SINKE GC, 1967, J CHEM PHYS, V47, P2759, DOI 10.1063/1.1712294 KOHN W, 1965, PHYS REV, V140, P1133 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864Wang, Yan Yan, Jia-An Chou, M. Y.AMER PHYSICAL SOCCOLLEGE PK

Website