Publications

Export 466 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
E
Philip, J, Hess* P, Feygelson T, Butler JE, Chattopadhyay S, Chen KH, Chen LC.  2003.  Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J. Appl. Phys.. 93:2164-2171.
Huang, BR, Huang CS, Wu CC, Chen LC, Chen KH.  2004.  Electrical properties of annealed MPCVD grown vertically aligned carbon nanotubes films. Diamond & Related Materials. 13:2156-2159.
Chang, CY, Chi GC, Wang WM, Chen* LC, Chen KH, Ren F, Pearton SJ.  2006.  Electrical transport properties of single GaN and InN nanowires. J. Electronic Materials. 35:738-743.
Das*, D, Jana M, Barua AK, Chattopadhyay S, Chen LC, Chen KH.  2002.  Electrical, thermal and structural properties of microcrystalline Si thin films. Jpn.Appl. Phys. Lett.. 41:L229-232.
and A. M. Basilio, Hsu YK, Wei PC, Ganguly A, Shih HC, Chen YT, Chen LC, Chen* KH.  2010.  Electrochemical Characterization of InN Thin Film for Biosensing Applications. J. New Mat. Electrochem. Systems. 13:337-343.
Chen, TT, Hsieh YP, Wei CM, Chen* YF, Chen LC, Chen KH, Peng YH, Kuan CH.  2008.  Electroluminescence enhancement of SiGe/Si multiple quantum wells through nanowall structures. Nanotechnology. 19:365705.
Chang, CY, Tsao FC, Pan CJ, Chi GC, Wang HT, Chen JJ, Ren F, Norton DP, Pearton* SJ, Chen KH, Chen LC.  2006.  Electroluminescence from ZnO nanowire/polymer composite p-n junction. Appl. Phys. Lett.. 88:173503-(1-3).
Hsieh, YP, Chen HY, Lin MZ, Shiu SC, Hofmann M, Chern MY, Jia X, Yang YJ, Chang HJ, Huang HM, Tseng SC, Chen* LC, Chen KH, Lin CF, Liang* CT, Chen YF.  2009.  Electroluminescence from ZnO/Si-nanotips light emitting diodes. Nano Letters. 9:1839.
Chen, KH, Wen CY, Wu CT, Chen LC, Wang CT, Ma KJ.  2001.  Electron beam induced formation of carbon nanorods. J. Phys. Chem. of Solids. 62:1561-1565.
Pimenov, SM, Frolov VD, Zavedeev EV, Abanshin NP, Du HY, Chen WC, Chen LC, Wu JJ, Chen KH.  2011.  Electron field emission properties of highly dense carbonnanotube arrays. Appl. Phys. A. 105:11.
Pong, WF, Chang YK, Hsieh HH, Tsai MH, Lee KH, Dann TE, Chien FZ, Tseng PK, Tsang KL, Su WK, Chen LC, Wei SL, Chen KH, Bhusari DM, Chen YF.  1998.  Electronic and Atomic Structures of Si-C-N Thin Film by X-ray-absorption Spectroscopy. J. Electron Spectroscopy and Related Pheno.. 92:115.
Chang, YK, Hsieh HH, Pong WF, Tsai MH, Lee KH, Dann TE, Chien FZ, Tseng PK, Tsang KL, Su WK, Chen LC, Wei SL, Chen KH, Bhusari DM, Chen YF.  1998.  Electronic and Atomic Structures of SiCN Thin Film by X-ray Absorption Spectroscopy and Theoretical Calculations. Phys. Rev.. B58:9018.
and H.M. Tsai, Jan CJ, Chiou JW, Pong* WF, Chen KH, et al.  2001.  Electronic and bonding structures of amorphous Si-C-N thin films by X-ray-absorption spectroscopy. Appl. Phys. Lett.. 79:2393-2395.
Ray, SC, Tsai HM, Bao CW, Chiou JW, Jan JC, Kumar K, Pong* WF, Tsai M-H, Chattopadhyay S, Chen LC, Chien SC, Lee MT, Lin ST, Chen KH.  2004.  Electronic and bonding structures of B-C-N thin films by X-ray absorption and photoemission spectroscopy. J. Appl. Phys. . 96:208-211.
Chiou, JW, Yueh CL, Jan JC, Tsai HM, Pong* WF, Hong IH, Klauser R, Tsai MH, Chang YK, Chen YY, Wu CT, Chen KH, Wei SL, Wen CY, Chen LC, Chuang TJ.  2002.  Electronic structure at the carbon nanotube tips studied by X-ray-absorption spectroscopy and scanning photoelectron microscopy. Appl. Phys. Lett.. 81:4189-4191.
Ashebir, ME, Sabhapathy P, Nasr O, Modak V, Moradlou O, Sabbah A, Huang C-Y, Nachimuthu S, Jiang J-C, Hu Y-L, Hung C-H, Chen L-C, Chen K-H.  2025.  Electronic structure engineering of nickel single-atom catalyst by phosphorous for efficient electrocatalytic CO2 reduction reaction in a proton-rich microenvironment, 2025. 509:161319. AbstractWebsite

The electrocatalytic carbon dioxide reduction reaction (eCO2RR) in an acidic environment is crucial for mitigating carbonate and bicarbonate formation while enhancing CO2 conversion efficiency. However, the hydrogen evolution reaction (HER) often outcompetes eCO2RR in a proton-rich microenvironment, posing a significant challenge. This study introduces an in-situ phosphatizing method to alter the electronic structure of a Ni–N4 single-atom catalyst (Ni–N3PC), thereby suppressing HER and promoting eCO2RR performance in acidic environments. The Ni–N3PC catalyst achieves a CO Faradaic efficiency (FE) exceeding 90 % over a wide potential range, high carbon conversion efficiency, a CO partial current density of –357.7 mA cm−2, and long-term stability for 100 h at –100 mA cm−2 with a FE of 85 %. Electrochemical impedance spectroscopy and turnover frequency analysis reveal that Ni–N3PC exhibits lower charge-transfer resistance and higher intrinsic activity, respectively. The structural characterization using X-ray absorption spectroscopy confirms the formation of Ni–P and Ni–N bonds while scanning transmission electron microscopy shows atomically dispersed Ni atoms on carbon networks. Density functional theory calculations further support the experimental results, showing that Ni–N3PC significantly lowers the energy barrier for the key *COOH intermediate, resulting in outstanding eCO2RR performance. This research provides valuable insights into the design of highly efficient Ni single-atom catalysts for industrial eCO2RR applications.

Sabhapathy, P, Shown I, Sabbah A, Raghunath P, Chen J-L, Chen W-F, Lin M-C, Chen K-H, Chen L-C.  2021.  Electronic structure modulation of isolated Co-N4 electrocatalyst by sulfur for improved pH-universal hydrogen evolution reaction, 2021. Nano Energy. 80:105544. AbstractWebsite

Exploring an efficient platinum group metal (PGM) free electrocatalyst with superior activity and stability for hydrogen evolution reaction (HER) in a wide pH range is desirable for low-cost hydrogen production. Here, we report atomically dispersed cobalt on nitrogen and sulfur co-doped graphene (N-Co-S/G) for HER. Remarkably, the prepared N-Co-S/G electrocatalyst shows a small overpotential of 67.7 mV vs. reversible hydrogen electrode (RHE) at a current density of 10 mA cm−2 and exceptional durability over 100 h at 10 mA cm−2 under acidic conditions. Moreover, we found that the HER activity of N-Co-S/G is close to 20% Pt/C at all pH levels (0–14) and superior activity at high current density (>100 mA cm−2). Experimental and theoretical calculations reveal that the S atom in N-Co-S/G form Co-S bond, resulting new Co-N3S1 active site, which optimizes Gibbs free energy for hydrogen adsorption (∆GH*) close to zero, while water adsorption and dissociation enhanced by S modulation for neutral and basic media HER.

Chiou, JW, Jan JC, Tsai HM, Pong* WF, Tsai MH, Hong IH, Klauser R, Lee JF, Hsu CW, Lin HM, Chen CC, Shen CH, Chen LC, Chen KH.  2003.  Electronic structure of GaN nanowire studied by X-ray-absorption spectroscopy and scanning photoelectron microscopy. Appl. Phys. Lett.. 82:3949-3951.
Pao, CW, Babu PD, Tsai HM, Chiou JW, Ray SC, Yang SC, Chien FZ, Pong* WF, Tsai M-H, Hsu CW, Chen LC, Chen KH, Lin H-J, Lee JF, Guo JH.  2006.  Electronic structure of group-III-nitride nanorods studied by x-ray absorption, x-ray emission, and Raman spectroscopy. Appl. Phys. Lett.. 88:223113-(1-3).
Yeh, CL, Jan CJ, Chiou JW, Pong* WF, Tsai MH, Chang YK, Chen YY, Lee JF, Tseng PK, Wei SL, Wen CY, Chen LC, Chen KH.  2001.  Electronic structure of the Fe-layer catalyzed carbon nanotubes studies by X-ray-absorption spectroscopy. Appl. Phys. Lett.. 79:3179-3181.
Raym, SC, Pao CW, Tsai HM, Chiou JW, Pong* WF, Chen CW, Tsai MH, Papakonstantinou P, Chen LC, Chen KH, Graham WG.  2007.  Electronic structures and bonding properties of chlorine-treated nitrogenated carbon nanotubes: X-ray absorption and scanning photoelectron microscopy study. Appl. Phys. Lett.. 90:192107.
Hsu, YK, Yang JL, Lin YG, Chen SY, Chen LC, Chen* KH.  2009.  Electrophoretic deposition of PtRu nanoparticles on carbon nanotubes for methanol oxidation. Diamond Relat. Mater.. 18:557-562.
Chen*, LC, Lin HY, Wong CS, Chen KH, Lin ST, Yu YC, Wang CW, Lin EK, Lin KC.  1999.  Ellipsometric study of carbon nitride thin films with and without silicon addition. Diamond & Related Materials. 8:618-622.
J. Wang, K.H. Chen, ME.  1988.  Energy Llocalization in Infrared Multiphoton Excited CF2Cl2 Studied by Time Resolved Raman Spectroscopy. Int. Conf. Quantum Electronics. :496., Tokyo Japan: Tech. Digest
Chattopadhyay, S, Chen LC, Chen KH.  2011.  Energy production and conversion applications ofone-dimensional semiconductor nanostructures. NPG Asia Mater.. 3:74-81.