Publications

Export 457 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Chen, YT, Tsai WC, Chen WY, Hsiao CL, Hsu HC, Chang WH, Hsu TM, Chen KH, Chen LC.  2012.  Growth of sparse arrays of narrow GaNnanorods hosting spectrally stable InGaNquantum disks. Opt. Express. 20:16166-16173.
Chen, RS, Lu CY, Chen KH, Chen LC.  2009.  Molecule-modulated photoconductivity and gain-amplified selective gas sensing in polar GaN nanowires. Appl. Phys. Lett.. 95:233119.
Chen, KH, Wu JJ, Chen LC, Wen C-Y, Kichambare PD, Tarntair FG, Kuo PF, Chang SW, Chen YF.  2000.  Comparative studies in field emission properties of carbon-based materials. Diamond & Related Materials. 9:1249-1256.
Chen, HM, Chen CK, Lin CC, Liu RS, Yang H, Chang WS, Chen KH, Chan TS, Lee JF, Tsai DP.  2011.  Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an X-ray absorption spectroscopy approach for the electronic evolution under solar illumination. J. Phys. Chem. C. 115:21971-21980.
Chen*, LC, Chang SW, Chang CS, Wen CY, Wu J-J, Chen YF, Huang YS, Chen KH.  2001.  Catalyst-free growth of transparent SiCN nanorods. J. Phys. & Chem. of Solids. 62:1567-1576.
Chen*, LC, Hong WK, Tarntair FG, Chen KJ, Lin JB, Kichambare PD, Cheng HC, Chen KH.  2001.  Field electron emission from carbon-based emitters and devices. New Diamond and Frontier Carbon Tech.. 11:249.
Chen*, KH, Bhusari DM, Yang JR, Lin ST, Wang TY, Chen LC.  1998.  Highly transparent nano-crystalline diamond films via substrate pretreatment and methane fraction optimization. Thin Solid Films. 332:34-39.
Chen*, C-C, Yeh C-C, Chen CH, Yu MY, Liu HL, Wu JJ, Chen KH, Chen LC, Peng JY, Chen YF.  2001.  Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc.. 123:2791-2798.
Chen*, CW, Huang CC, Lin YY, Su WF, Chen* LC, Chen KH.  2006.  Photoconductivity and highly selective UV sensing features of amorphous silicon carbon nitride thin films. Appl. Phys. Lett.. 88:073515-(1-3).
Chen*, KH, Hsu CH, Lo HC, Chattopadhyay S, Wu CT, Hwang JS, Yang YJ, Chen LC.  2005.  Generally applicable self-masking technique for nanotip array fabrication. Int. J. Nanoscience. 4:879-886.
Chen*, LC, Hong WK, Tarntair FG, Chen KJ, Lin JB, Kichambare PD, Cheng HC, Chen KH.  2001.  Field electron emission from C-based emitters and devices. New Diamond and Frontier Carbon Technology. 11:249-263.
Chen*, CW, Huang CC, Lin YY, Chen LC, Chen KH, Su WF.  2005.  Optical properties and photoconductivity of amorphous silicon carbon nitride thin film and its application for UV detection. Diamond Relat. Mater.. 14:1010-1013.
Chen*, KH, Wong TS, Wang CT, Chen LC, Ma KJ.  2001.  Carbon nanotubes growth by rapid thermal processing. Diamond and Related Materials. 10:1810-1813.
Chen*, RS, Tsai HY, Chan CH, Huang YS, Chen YT, Chen KH, Chen LC.  2015.  Comparison of CVD- and MBE-grown GaN nanowires: crystallinity, photoluminescence, and photoconductivity. J. Electronic Mater. . 44 :177.
Chen*, LC, Wen CY, Liang CH, Hong WK, Chen KJ, Cheng HC, Shen CS, Wu CT, Chen KH.  2002.  Controlling steps during early stages of the aligned growth of carbon nanotubes using microwave plasma enhanced chemical vapor deposition. Adv. Fun. Mate. 12:687-692.
Chen*, LC, Lin HY, Wong CS, Chen KH, Lin ST, Yu YC, Wang CW, Lin EK, Lin KC.  1999.  Ellipsometric study of carbon nitride thin films with and without silicon addition. Diamond & Related Materials. 8:618-622.
Chen*, CW, Lee MH, Chen LC, Chen KH.  2004.  Structural and electronic properties of wide band gap silicon carbon nitride materials – afirst principles study. Diamond & Relat. Mater.. 13:1158-1165.
Cheng*, HC, Hong WK, Tarntair FG, Chen KJ, Lin JB, Chen KH, Chen LC.  2001.  Integration of thin film transistor controlled carbon nanotubes for field-emission devices. Electrochemical and Solid-State Letters. 4 (4):H5-H7.
Cheng*, HC, Chen KJ, Hong WK, Tarntair FG, Lin JB, Chen KH, Chen LC.  2001.  Fabrication and characterization of low turn-on voltage carbon nanotube field emission triodes. Electrochemical and Solid-State Letters. 4 (8):H15-17.
Cheng-YingChen, Aprillia BS, Wei-ChaoChen, Teng Y-C, Chiu C-Y, Chen R-S, Hwang J-S, Chen K-H, Chen L-C.  2018.  Above 10% Efficiency Earth-abundant Cu2ZnSn(S,Se)4 Solar Cells by Introducing Alkali Metal Fluoride Nanolayers as Electron-selective Contacts. Nano Energy. :-. AbstractWebsite

Abstract The present investigation mainly addresses the open circuit voltage (Voc) issue in kesterites based Cu2ZnSn(S,Se)4 solar cells by simply introducing alkali metal fluoride nanolayers (  several nm NaF, or LiF) to lower the work functions of the front İTO\} contacts without conventional hole-blocking ZnO layers. Kelvin probe measurements confirmed that the work function of the front İTO\} decreases from 4.82 to 3.39 and 3.65 eV for NaF and LiF, respectively, resulting in beneficial band alignment for electron collection and/or hole blocking on top electrodes. Moreover, a 10.4% power conversion efficiency ( 11.5% in the cell effective area) \{CZTSSe\} cell with improved Voc of up to 90 mV has been attained. This demonstration may provide a new direction of further boosting the performance of copper chalcogenide based solar cells as well.

Cheng-YingChen, Aprillia BS, Wei-ChaoChen, Teng Y-C, Chiu C-Y, Chen R-S, Hwang J-S, Chen K-H, Chen L-C.  2018.  Above 10% efficiency earth-abundant Cu2ZnSn(S,Se)4 solar cells by introducing alkali metal fluoride nanolayers as electron-selective contacts, 2018. Nano Energy. 51:597-603. AbstractWebsite

The present investigation mainly addresses the open circuit voltage (Voc) issue in kesterite based Cu2ZnSn(S,Se)4 solar cells by simply introducing alkali metal fluoride nanolayers (~ several nm NaF, or LiF) to lower the work functions of the front ITO contacts without conventional hole-blocking ZnO layers. Kelvin probe measurements confirmed that the work function of the front ITO decreases from 4.82 to 3.39 and 3.65 eV for NaF and LiF, respectively, resulting in beneficial band alignment for electron collection and/or hole blocking on top electrodes. Moreover, a 10.4% power conversion efficiency (~ 11.5% in the cell effective area) CZTSSe cell with improved Voc of up to 90 mV has been attained. This demonstration may provide a new direction of further boosting the performance of copper chalcogenide based solar cells as well.

Chien, CT, Li SS, Lai WJ, Yeh YC, Chen HA, Chen LC, Chen KH, T.Nemoto, Isoda S, Chen M, Fujita T, Chhowalla M, Chen CW.  2012.  Tunable photoluminescence from graphene oxide. Angewandte Chemie. 51:6662-6666.
Chien, SC, Chattopadhyay* S, Chen LC, Lin ST, Chen KH.  2003.  Mechanical properties of amorphous boron carbon nitride films produced by dual gun sputtering. Diamond Relat. Mater. . 12:1463-1471.
Chiou, JW, Jan JC, Tsai HM, Pong* WF, Tsai MH, Hong IH, Klauser R, Lee JF, Hsu CW, Lin HM, Chen CC, Shen CH, Chen LC, Chen KH.  2003.  Electronic structure of GaN nanowire studied by X-ray-absorption spectroscopy and scanning photoelectron microscopy. Appl. Phys. Lett.. 82:3949-3951.
Chiou, JW, Yueh CL, Jan JC, Tsai HM, Pong* WF, Hong IH, Klauser R, Tsai MH, Chang YK, Chen YY, Wu CT, Chen KH, Wei SL, Wen CY, Chen LC, Chuang TJ.  2002.  Electronic structure at the carbon nanotube tips studied by X-ray-absorption spectroscopy and scanning photoelectron microscopy. Appl. Phys. Lett.. 81:4189-4191.