Samireddi, S, Aishwarya V, Shown I, Muthusamy S, Unni SM, Wong K-T, Chen K-H, Chen L-C.
2021.
Synergistic Dual-Atom Molecular Catalyst Derived from Low-Temperature Pyrolyzed Heterobimetallic Macrocycle-N4 Corrole Complex for Oxygen Reduction. Small. 17:2103823., Number 46
AbstractAbstract A heterobimetallic corrole complex, comprising oxygen reduction reaction (ORR) active non-precious metals Co and Fe with a corrole-N4 center (PhFCC), is successfully synthesized and used to prepare a dual-atom molecular catalyst (DAMC) through subsequent low-temperature pyrolysis. This low-temperature pyrolyzed electrocatalyst exhibited impressive ORR performance, with onset potentials of 0.86 and 0.94 V, and half-wave potentials of 0.75 and 0.85 V, under acidic and basic conditions, respectively. During potential cycling, this DAMC displayed half-wave potential losses of only 25 and 5 mV under acidic and alkaline conditions after 3000 cycles, respectively, demonstrating its excellent stability. Single-cell Nafion-based proton exchange membrane fuel cell performance using this DAMC as the cathode catalyst showed a maximum power density of 225 mW cm−2, almost close to that of most metal–N4 macrocycle-based catalysts. The present study showed that preservation of the defined CoN4 structure along with the cocatalytic Fe–Cx site synergistically acted as a dual ORR active center to boost overall ORR performance. The development of DAMC from a heterobimetallic CoN4-macrocyclic system using low-temperature pyrolysis is also advantageous for practical applications.
Lin, CH, Tseng SC, Liu YK, Tai Y, Chattopadhyay S, Lin CF, Lee JH, Hwang JS, Chen* LC, Chen WC, Chen* KH.
2008.
Suppressing series resistance in organic solar cells by oxygen plasma treatment. Appl. Phys. Lett.. 92:233302.
Syum, Z, Venugopal B, Sabbah A, Billo T, Chou T-chin, Wu H-L, Chen L-C, Chen K-H.
2021.
Superior lithium-ion storage performance of hierarchical tin disulfide and carbon nanotube-carbon cloth composites, 2021. Journal of Power Sources. 482:228923.
AbstractTin-based composites are promising anode materials for high-performance lithium-ion batteries (LIBs); however, insufficient conductivity, as well as fatal volume expansion during cycling lead to poor electrochemical reversibility and cycling stability. In this work, we demonstrate the lithium-ion storage behaviors of SnS2 anode material deposited on different electrode supports. The SnS2 grown on 3D hierarchical carbon nanotube-carbon cloth composites (SnS2-CNT-CC) shows superior capacity retention and cycle stability, compared to that on planar Mo sheets and carbon cloth. The specific capacity of SnS2 on Mo, CC, and CNT-CC is around 240, 840, and 1250 g−1, respectively. The SnS2-CNT-CC electrode outperforms in the cyclic performance and rate capability compared to other electrode configurations due to the multi-electron pathway and high surface area derived from 3D hierarchical CNT-CC electrode support. Furthermore, a significant decrease in the charge transfer resistance is observed by utilizing 3D hierarchical CNT-CC electrode support. The use of 3D hierarchical structures as electrode support could be the best alternative to enhance the electrochemical performances for the next generation LIBs.
Chang, YS, Chien CT, Chen* CW, Chu TY, Chiang HH, Ku CH, Wu JJ, Lin CS, Chen LC, Chen KH.
2007.
Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies. J. Appl. Phys.. 101:033502.
Berzina, B, Trinkler L, Jakimovica D, Korsaks V, Grabis J, Steins I, Palcevskis, Bellucci S, Chen LC, Chattopadhyay S t, Chen KH.
2009.
Spectral characterization of bulk and nanostructuredaluminum nitride. J. Nanophotonics. 3:031950.