Publications

Export 466 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
O
Hammad Elsayed, M, Abdellah M, Alhakemy AZ, Mekhemer IMA, Aboubakr AEA, Chen B-H, Sabbah A, Lin K-H, Chiu W-S, Lin S-J, Chu C-Y, Lu C-H, Yang S-D, Mohamed MG, Kuo S-W, Hung C-H, Chen L-C, Chen K-H, Chou H-H.  2024.  Overcoming small-bandgap charge recombination in visible and NIR-light-driven hydrogen evolution by engineering the polymer photocatalyst structure, 2024. Nature Communications. 15(1):707. AbstractWebsite

Designing an organic polymer photocatalyst for efficient hydrogen evolution with visible and near-infrared (NIR) light activity is still a major challenge. Unlike the common behavior of gradually increasing the charge recombination while shrinking the bandgap, we present here a series of polymer nanoparticles (Pdots) based on ITIC and BTIC units with different π-linkers between the acceptor-donor-acceptor (A-D-A) repeated moieties of the polymer. These polymers act as an efficient single polymer photocatalyst for H2 evolution under both visible and NIR light, without combining or hybridizing with other materials. Importantly, the difluorothiophene (ThF) π-linker facilitates the charge transfer between acceptors of different repeated moieties (A-D-A-(π-Linker)-A-D-A), leading to the enhancement of charge separation between D and A. As a result, the PITIC-ThF Pdots exhibit superior hydrogen evolution rates of 279 µmol/h and 20.5 µmol/h with visible (>420 nm) and NIR (>780 nm) light irradiation, respectively. Furthermore, PITIC-ThF Pdots exhibit a promising apparent quantum yield (AQY) at 700 nm (4.76%).

Wang, C-H, Chang S-T, Hsu H-C, Du H-Y, Wu JC-S, Chen L-C, Chen* K-H.  2011.  Oxygen reducing activity of methanol-tolerant catalysts by high-temperature pyrolysis. Diamond & Relat. Mater.. 20:322.
Hailemariam, AG, Syum Z, Mamo TT, Qorbani M, Hsing C-R, Sabbah A, Quadir S, Bayikadi KS, Wu H-L, Wei C-M, Chen L-C, Chen K-H.  2024.  Oxygen-Incorporated Lithium-Rich Iron Sulfide Cathodes for Li-Ion Batteries with Boosted Material Stability and Electrochemical Performance, 2024. Chemistry of MaterialsChemistry of Materials. 36(19):9370-9379.: American Chemical Society AbstractWebsite
n/a
P
Wong, DP, Lien HT, Chen YT, Chen KH, Chen LC.  2012.  Patterned growth of nanocrystalline silicon thin films through magnesiothermic reduction of soda lime glass. Green Chemistry. 14:896-900.
Wright, JS, Lim W, Gila BP, Pearton* SJ, Ren F, Lai WT, Chen LC, Hu MS, Chen KH.  2009.  Pd-catalyzed hydrogen sensing with InN nanobelts. J. Vac. Sci. Technol.. B 27:L8-10.
Chattopadhyay, S, Chen* LC, Chien SC, Lin ST, Wu CT, Chen KH.  2002.  Phase and thickness dependence of thermal diffusivity in SiCxNy and BCxNy,. Thin Solid Films. 420:205-211.
Hwang*, JS, Hu ZS, Lu TY, Chen LW, Chen SW, Lin TY, Hsiao CL, Chen KH, Chen LC.  2006.  Photo-assisted local oxidation of GaN using an atomic force microscope. Nanotechnology. 17:3299-3303.
Lin*, YG, Lin* CK, Miller JT, Hsu YK, Chen YC, Chen LC, Chen KH.  2012.  Photochemically active reduced graphene oxide with controllable oxidation level. RSC Advances. 2:11258-11562.
Pao, C-W, Wu C-T, Tsai H-M, Liu Y-S, Chang C-L, Pong WF, Chiou J-W, Chen C-W, Hu M-S, Chu M-W, Chen L-C, Chen C-H, Chen K-H, Wang S-B, Chang S-J, Tsai M-H, Lin H-J, Lee J-F, Guo J-H.  2011.  Photoconduction and the electronic structure of silica nanowires embedded with gold nanoparticles. Phys. Rev. B. 84:165412.
Chen, RS, Tsai HY, Huang YS, Chen YT, Chen LC, Chen KH.  2012.  Photoconduction efficiencies in GaN nanowires grown by chemical vapor deposition and molecular beam epitaxy: acomparison study. Appl. Phys. Lett.. 101:113109.
R. S. Chen*, Yang TH, Chen HY, Chen LC, Chen* KH, Yang YJ, Su CH, Lin CR.  2011.  Photoconduction mechanism of oxygen sensitization in InN nanowires. Nanotechnology. 22:425702.
Lin, CH, Chen RS, Lin YK, Wang SB, Chen LC, Chen KH, Wen MC, Chou MMC, Chang L.  2017.  Photoconduction properties and anomalous power-dependent quantum efficiency in non-polar ZnO epitaxial films grown by chemical vapor deposition. APPLIED PHYSICS LETTERS . 110:052101.
Chen*, CW, Huang CC, Lin YY, Su WF, Chen* LC, Chen KH.  2006.  Photoconductivity and highly selective UV sensing features of amorphous silicon carbon nitride thin films. Appl. Phys. Lett.. 88:073515-(1-3).
Huang, HM, Chen RS, Chen HY, Liu TW, Kuo CC, Chen CP, Hsu HC, Chen LC, Chen* KH, Yang YJ.  2010.  Photoconductivity in single AlN nanowires by sub-bandgap excitation. Appl. Phys. Lett.. 96:062104.
Hwang, JS, Kao MC, Shiu JM, Fan CN, Ye SC, Yu WS, Lin TY, Chattopadhyay S, Chen LC, Chen KH.  2011.  Photocurrent mapping in high efficiency radial p-n junction silicon nanowire solar cells using atomic force microscopy. J. Phys. Chem. C. 115:21981-21986.
Hsiao, CL, Hsu HC, Chen* LC, Wu CT, Chen CW, Chen M, Tu LW, Chen KH.  2007.  Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors. Appl. Phys. Lett.. 91:181912.
Hu, MS, Chen HL, Shen CH, Hong LS, Huang BR, Chen KH, Chen* LC.  2006.  Photosensitive gold nanoparticle-embedded dielectric nanowires. Nature Materials. 5:102-106.
Hsieh, CH, Huang YS, Tiong KK, Fan CW, Chen YF, Chen LC, Wu JJ, Chen KH.  2000.  Piezoreflectance study of a Fe-containing silicon carbon nitride crystalline film. J. Appl. Phys.. 87:280-284.
Hsieh, CH, Huang YS, Kuo PF, Chen YF, Chen LC, Wu JJ, Chen KH, Tiong KK.  2000.  Piezoreflectance study of silicon carbon nitride nanorods. Appl. Phys. Lett.. 76:2044-2046.
Huang, YF, Chen CY, Chen LC, Chen KH, Chattopadhyay S.  2014.  Plasmon management in index engineered 2.5D hybrid nanostructures for SERS. NPG Asia Materials. 6:e123.
Lin, YG, Hsu YK, Wang SB, Chen YC, Chen LC, Chen KH.  2012.  Plasmonic Ag@Ag3PO4 Nanoparticle Photosensitized ZnO Nanorod-Array Photoanodes for Water Oxidation. Energy & Environ. Sci.. 5:8917-8922.
Wang, CH, Hsu HC, Chang ST, Du HY, Wu CH, Shih HC, Chen LC, Chen* KH.  2010.  Platinum nanoparticles embedded in nitrogen-containing complexes for high methanol-tolerant oxygen reduction activity. J. Mater. Chem.. 20:7551-7557.
Amloy, S, Chen YT, Karlsson KF, Chen KH, Hsu HC, Hsiao CL, C.Chen L, Holtz* PO.  2011.  Polarization resolved fine structure splitting of zero-dimensional InGaN excitons. Phys. Rev. B. 83:201307.
Karlsson, KF, Amloy S, Chen YT, Chen KH, Hsu HC, Hsiao CL, Chen LC, Holtz PO.  2012.  Polarized emission and excitonic fine structure energies of InGaN quantum dots. Physica B-Condensed Matter. 407:1553.
Chen, J-C, Hsiao Y-R, Liu Y-C, Chen P-Y, Chen K-H.  2019.  Polybenzimidazoles containing heterocyclic benzo[c]cinnoline structure prepared by sol-gel process and acid doping level adjustment for high temperature PEMFC application, 2019. 182:121814. AbstractWebsite

Polybenzimidazoles containing heterocyclic benzo[c]cinnoline structure are synthesized from 3,8-benzo[c]cinnoline dicarboxylic acid, terephthalic acid and 3,3′-diaminobenzidine. Their membranes are prepared by sol-gel process, involving the conversion of polymer solution in polyphosphoric acid to phosphoric acid. The acid doping levels of the as-prepared membranes increase as the contents of benzo[c]cinnoline increase, indicating good interaction between phosphoric acid and benzo[c]cinnoline structure. The as-prepared membranes with high acid doping levels might lead to the dissolution of membranes in phosphoric acid at temperature higher than 120 °C. A new method is proposed to adjust acid doping levels by immersing the as-prepared membranes in diluted phosphoric acid solutions of various concentrations. The adjusted membranes (acid doping levels around 30 PA RU−1) exhibit enhanced mechanical properties with tensile strength in the range of 4.1–5.2 MPa. The proton conductivity of adjusted membranes maintain at 0.15–0.17 S cm−1 at 160 °C under ambient atmosphere without humidification. The single cells based on the adjusted membranes exhibit open circuit voltages and peak power densities from 0.89 to 0.91 V and 691–1253 mW cm−2 at 160 °C, respectively. Compared to other polybenzimidazole membranes prepared by sol-gel process, the adjusted polybenzimidazoles show higher mechanical strength and better single cell performance.