Publications

Export 124 results:
Sort by: Author Title Type [ Year  (Desc)]
2024
Thang, NQ, Sabbah A, Chen L-C, Chen K-H.  2024.  Back cover, 2024. Journal of Materials Chemistry A. 12(46):32483-32484.: The Royal Society of ChemistryJMCA_back_cover_2024.pdfWebsite
Kamal Hussien, M, Sabbah A, Qorbani M, Putikam R, Kholimatussadiah S, Tzou D-LM, Hammad Elsayed M, Lu Y-J, Wang Y-Y, Lee X-H, Lin T-Y, Thang NQ, Wu H-L, Haw S-C, Wu KC-W, Lin M-C, Chen K-H, Chen L-C.  2024.  Constructing B─N─P Bonds in Ultrathin Holey g-C3N4 for Regulating the Local Chemical Environment in Photocatalytic CO2 Reduction to CO, 2024. Small. n/a(n/a):2400724.: John Wiley & Sons, Ltd AbstractWebsite

Abstract The lack of intrinsic active sites for photocatalytic CO2 reduction reaction (CO2RR) and fast recombination rate of charge carriers are the main obstacles to achieving high photocatalytic activity. In this work, a novel phosphorus and boron binary-doped graphitic carbon nitride, highly porous material that exhibits powerful photocatalytic CO2 reduction activity, specifically toward selective CO generation, is disclosed. The coexistence of Lewis-acidic and Lewis-basic sites plays a key role in tuning the electronic structure, promoting charge distribution, extending light-harvesting ability, and promoting dissociation of excitons into active carriers. Porosity and dual dopants create local chemical environments that activate the pyridinic nitrogen atom between the phosphorus and boron atoms on the exposed surface, enabling it to function as an active site for CO2RR. The P?N?B triad is found to lower the activation barrier for reduction of CO2 by stabilizing the COOH reaction intermediate and altering the rate-determining step. As a result, CO yield increased to 22.45 µmol g?1 h?1 under visible light irradiation, which is ≈12 times larger than that of pristine graphitic carbon nitride. This study provides insights into the mechanism of charge carrier dynamics and active site determination, contributing to the understanding of the photocatalytic CO2RR mechanism.

Thang, NQ, Sabbah A, Huang C-Y, Phuong NH, Lin T-Y, Kamal Hussien M, Wu H-L, Wu C-I, Pham NNT, Viet PV, Lee C-H, Chen L-C, Chen K-H.  2024.  Tailoring atomically dispersed Fe-induced oxygen vacancies for highly efficient gas-phase photocatalytic CO2 reduction and NO removal with diminished noxious byproducts, 2024. Journal of Materials Chemistry A. 12(46):31847-31860.: The Royal Society of Chemistry AbstractWebsite

Single-atom-supported metal oxides have attracted extensive interest in energy catalysis, offering a promising avenue for mitigating greenhouse gas emissions and environmental pollution. This study presents a facile synthesis of single-atom Fe-modified Bi2WO6 photocatalysts. By carefully tuning the Fe ratios, the 1.5Fe-Bi2WO6 sample demonstrates exceptional photocatalytic efficiency in CO2 to CO reduction (36.78 μmol g−1). Additionally, an outstanding NO removal performance is also achieved through this photocatalyst with an impressively low conversion of toxic NO2 at just 0.37%. The reaction intermediates and mechanisms governing the photocatalytic reduction of CO2 into CO are elucidated using in situ DRIFTS and in situ XAS techniques. Regarding NO removal, the introduction of Fe single-atoms, along with induced oxygen vacancies, plays a pivotal role in facilitating the transformation of NO and NO2 into nitrate by stabilizing NO and NO2 species. Mechanistic insights into photocatalytic NO oxidation are garnered through scavenger trapping and EPR experiments employing DMPO. This study emphasizes single-atom-supported metal oxide's potential in sustainable chemistry and air purification, providing a promising solution for urgent environmental challenges.

Bayikadi, KS, Imam S, Tee W-S, Kavirajan S, Chang C-Y, Sabbah A, Fu F-Y, Liu T-R, Chiang C-Y, Shukla D, Wu C-T, Chen L-C, Chou M-Y, Chen K-H, Sankar R.  2024.  Ultra-low lattice thermal conductivity driven high thermoelectric figure of merit in Sb/W co-doped GeTe, 2024. Journal of Materials Chemistry A. 12(44):30892-30905.: The Royal Society of Chemistry AbstractWebsite

High thermoelectric performance is a material challenge associated mainly with the manipulation of lattice dynamics to obtain extrinsic phonon transport routes, which can make the lattice thermal conductivity (κlat) intrinsically low by introducing multiple scattering mechanisms. The present study shows that the lattice-strain-induced phonon scattering resulting from microstructural distortions in GeTe-based compounds can enable ultralow lattice thermal conductivity. The unusual lattice shrinkage, W interstitials, W nanoprecipitates, and heavy elemental mass, in Ge0.85Sb0.1W0.05Te culminate in an ultralow lattice thermal conductivity of ∼0.2 W m−1 K−1 at 825 K. Microstructural distortions in this Sb/W co-doped GeTe are found to be primarily associated with shorter W–Te bonding owing to the anomalous effect of the higher electronegativity of the W atoms. Furthermore, the increased electrical conductivity (σ) resulting from the enhanced vacancy formation caused by W doping and W interstitials synergistically contributes to optimization of the thermoelectric performance (ZT) to ∼2.93 at 825 K. The thermoelectric efficiency (η) as high as ∼17% has been obtained for a single leg in this composition at an operating temperature of 825 K, with an estimated device ZT value of ∼1.38.

Huang, C-Y, Tseng S-C, Wei-ChaoChen, Yin G-C, Chen B-Y, Chen K-H, Chen L-C, Cheng-YingChen.  2024.  Visualization of Anion Vacancy Defect Annihilation in CZTSe Solar Cells by Hydrogen-Assisted Selenization with In Operando X-ray Nanoprobe Studies, 2024. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces. 16(47):64656-64663.: American Chemical Society AbstractWebsite
n/a
2023
Kamal Hussien, M, Sabbah A, Qorbani M, Hammad Elsayed M, Quadir S, Raghunath P, Tzou D-LM, Haw S-C, Chou H-H, Thang NQ, Lin M-C, Chen L-C, Chen K-H.  2023.  Numerous defects induced by exfoliation of boron-doped g-C3N4 towards active sites modulation for highly efficient solar-to-fuel conversion, 2023. Materials Today Sustainability. 22:100359. AbstractWebsite

Graphitic carbon nitride (CN) has emerged as a highly promising material in the photocatalysis field. However, its bulk structure suffers from a lack of active sites, limiting its practical application. Herein, a boron-doped CN (BCN) was prepared by a green gas-blowing-assisted thermal polymerization and then subjected to different exfoliation processes in order to delaminate the layered structure and tune the surface-active sites. A thorough comparative study shows that thermal exfoliation creates unsaturated nitrogen sites and induces the formation of interconnected layers that act as an electron diffusion channel for better charge transport. Furthermore, the thermally exfoliated BCN is rich in structural disorders that serve as dissociation defects for photoinduced charge carriers with a low exciton binding energy of 27 meV. Experimental results supported by theoretical calculations show that the nitrogen adjacent to boron is activated by the surrounding surface amino groups and the perforated texture to serve as an active adsorption site towards CO2 and H2O. Consequently, the exfoliated BCN acts as an outstanding bifunctional photocatalyst towards CO2 reduction into CO (40.41 μmol g−1 h−1) and prominent hydrogen evolution (4740 μmol g−1 h−1, 12.2% apparent quantum yield (AQY)).

2022
Quadir, S, Qorbani M, Sabbah A, Wu T-S, kumar Anbalagan A, Chen W-T, Valiyaveettil SM, Thong H-T, Wang C-W, Cheng-YingChen, Lee C-H, Chen K-H, Chen L-C.  2022.  Short- and Long-Range Cation Disorder in (AgxCu1–x)2ZnSnSe4 Kesterites, 2022. Chemistry of Materials. : American Chemical Society AbstractWebsite

n/a

Shelke, AR, Wang H-T, Chiou J-W, Shown I, Sabbah A, Chen K-H, Teng S-A, Lin I-A, Lee C-C, Hsueh H-C, Liang Y-H, Du C-H, Yadav PL, Ray SC, Hsieh S-H, Pao C-W, Tsai H-M, Chen C-H, Chen K-H, Chen L-C, Pong W-F.  2022.  Bandgap Shrinkage and Charge Transfer in 2D Layered SnS2 Doped with V for Photocatalytic Efficiency Improvement. Small. n/a:2105076., Number n/a AbstractWebsite

Abstract Effects of electronic and atomic structures of V-doped 2D layered SnS2 are studied using X-ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X-ray absorption fine structure measurements at V K-edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X-ray absorption near-edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,β resonant inelastic X-ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo-excited electrons and effective carrier separation in layered SnS2. Additionally, valence-band photoemission spectra and S K-edge XANES indicate that the density of states near/at valence-band maximum is shifted to lower binding energy in V-doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first-principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V-doped SnS2.

2021
Thang, NQ, Sabbah A, Chen L-C, Chen K-H, Thi CM, Viet PV.  2021.  High-efficient photocatalytic degradation of commercial drugs for pharmaceutical wastewater treatment prospects: A case study of Ag/g-C3N4/ZnO nanocomposite materials, 2021. Chemosphere. 282:130971. AbstractWebsite

Pharmaceutical drugs' removal from wastewater by photocatalytic oxidation process is considered as an attractive approach and environmentally friendly solution. This report aims to appraise the practical application potential of Ag/g-C3N4/ZnO nanorods toward the wastewater treatment of the pharmaceutical industry. The catalysts are synthesized by straightforward and environmentally-friendly strategies. Specifically, g-C3N4/ZnO nanorods heterostructure is constructed by a simple self-assembly method, and then Ag nanoparticles are decorated on g-C3N4/ZnO nanorods by a photoreduction route. The results show that three commercial drugs (paracetamol, amoxicillin, and cefalexin) with high concentration (40 mg L−1) are significantly degraded in the existence of a small dosage of Ag/g-C3N4/ZnO nanorods (0.08 g L−1). The Ag/g-C3N4/ZnO nanorods photocatalyst exhibits degradation performance of paracetamol higher 3.8, 1.8, 1.3 times than pristine g-C3N4, ZnO nanorods, and g-C3N4/ZnO nanorods. Furthermore, Ag/g-C3N4/ZnO nanorods have an excellent reusability and a chemical stability that achieved paracetamol degradation efficiency of 78% and remained chemical structure of the photocatalyst after five cycles. In addition, the photocatalytic mechanism explanation and comparison of photocatalytic drugs’ degradation ability have also been discussed in this study.

Quadir, S, Qorbani M, Lai Y-R, Sabbah A, Thong H–T, Hayashi M, Chen C–Y, Chen K–H, Chen L–C.  2021.  Impact of Cation Substitution in (AgxCu1−x)2ZnSnSe4 Absorber-Based Solar Cells toward 10% Efficiency: Experimental and Theoretical Analyses, 2021. Solar RRLSolar RRL. n/a(n/a):2100441.: John Wiley & Sons, Ltd AbstractWebsite

Solar cells based on kesterite Cu2ZnSnSe4 (CZTSe) compounds with earth-abundant elements are highly desirable for the low-cost and high-efficiency production of renewable energy. However, the occurrence of intrinsic defects substantially impairs the photovoltaic properties of CZTSe. Herein, a cation substitution method to control and passivate the defect states in bandgap of kesterite CZTSe by incorporating Ag ions is introduced. Intensity-dependent low-temperature photoluminescence measurements show that Ag incorporation can reduce the density and depth of intrinsic defects in CZTSe. The results reveal that 10% Ag-alloyed CZTSe provides the shallowest defect states and less nonradiative recombination. It is also confirmed by first-principles calculations that Ag incorporation enables the formation and suppresses the beneficial and detrimental defects, respectively. Based on the theoretical results, the observed subband photoluminescence peaks can be assigned to the intrinsic point and cluster defects. The best power conversion efficiency of 10.2% is achieved for the 10% Ag-alloyed CZTSe cell, along with an enhanced open-circuit voltage. These results open up a new avenue for further improving the performances of CZTSe-based device via defect engineering.

Kamal Hussien, M, Sabbah A, Qorbani M, Hammad Elsayed M, Raghunath P, Lin T-Y, Quadir S, Wang H-Y, Wu H-L, Tzou D-LM, Lin M-C, Chung P-W, Chou H-H, Chen L-C, Chen K-H.  2021.  Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution, 2021. Chemical Engineering Journal. :132853. AbstractWebsite

Utilization of g-C3N4 as a single photocatalyst material without combination with other semiconductor remains challenging. Herein, we report a facile green method for synthesizing a metal free modified g-C3N4 photocatalyst. The modification process combines four different strategies in a one-pot thermal reaction: non-metal doping, porosity generation, functionalization with amino groups, and thermal oxidation etching. The as-prepared amino-functionalized ultrathin nanoporous boron-doped g-C3N4 exhibited a high specific surface area of 143.2 m2 g−1 which resulted in abundant adsorption sites for CO2 and water molecules. The surface amino groups act as Lewis basic sites to adsorb acidic CO2 molecules, which can also serve as active sites to facilitate hydrogen generation. Besides, the simultaneous use of ammonium chloride as a dynamic gas bubble template along with thermal oxidation etching efficiently boosts the delamination of the g-C3N4 layers to produce ultrathin sheets; this leads to stronger light–matter interactions and efficient charge generation. Consequently, the newly modified g-C3N4 achieved selective gas-phase CO2 reduction into CO with a production yield of 21.95 µmol g-1, in the absence of any cocatalyst. Moreover, a high hydrogen generation rate of 3800 µmol g-1 h-1 and prominent apparent quantum yield of 10.6% were recorded. This work opens up a new avenue to explore different rational modifications of g-C3N4 nanosheets for the efficient production of clean energy.

Du, H-Y, Huang Y-F, Wong D, Tseng M-F, Lee Y-H, Wang C-H, Lin C-L, Hoffmann G, Chen K-H, Chen L-C.  2021.  Nanoscale redox mapping at the MoS2-liquid interface, 2021. 12(1):1321. AbstractWebsite

Layered MoS2 is considered as one of the most promising two-dimensional photocatalytic materials for hydrogen evolution and water splitting; however, the electronic structure at the MoS2-liquid interface is so far insufficiently resolved. Measuring and understanding the band offset at the surfaces of MoS2 are crucial for understanding catalytic reactions and to achieve further improvements in performance. Herein, the heterogeneous charge transfer behavior of MoS2 flakes of various layer numbers and sizes is addressed with high spatial resolution in organic solutions using the ferrocene/ferrocenium (Fc/Fc+) redox pair as a probe in near-field scanning electrochemical microscopy, i.e. in close nm probe-sample proximity. Redox mapping reveals an area and layer dependent reactivity for MoS2 with a detailed insight into the local processes as band offset and confinement of the faradaic current obtained. In combination with additional characterization methods, we deduce a band alignment occurring at the liquid-solid interface.

Su, T-Y, Wang T-H, Wong DP, Wang Y-C, Huang A, Sheng Y-C, Tang S-Y, Chou T-chin, Chou T-L, Jeng H-T, Chen L-C, Chen K-H, Chueh Y-L.  2021.  Thermally Strain-Induced Band Gap Opening on Platinum Diselenide-Layered Films: A Promising Two-Dimensional Material with Excellent Thermoelectric Performance, 2021. Chemistry of MaterialsChemistry of Materials. 33(10):3490-3498.: American Chemical Society AbstractWebsite
n/a
Huang, Y-F, Liao K-W, Fahmi FRZ, Modak VA, Tsai S-H, Ke S-W, Wang C-H, Chen L-C, Chen K-H.  2021.  Thickness-Dependent Photocatalysis of Ultra-Thin MoS2 Film for Visible-Light-Driven CO2 Reduction. Catalysts. 11, Number 11 AbstractWebsite

The thickness of transition metal dichalcogenides (TMDs) plays a key role in enhancing their photocatalytic CO2 reduction activity. However, the optimum thickness of the layered TMDs that is required to achieve sufficient light absorption and excellent crystallinity has still not been definitively determined. In this work, ultra-thin molybdenum disulfide films (MoS2TF) with 25 nm thickness presented remarkable photocatalytic activity, and the product yield increased by about 2.3 times. The photocatalytic mechanism corresponding to the TMDs’ thickness was also proposed. This work demonstrates that the thickness optimization of TMDs provides a cogent direction for the design of high-performance photocatalysts.

2020
Chang, M-C, Ho P-H, Tseng M-F, Lin F-Y, Hou C-H, Lin I-K, Wang H, Huang P-P, Chiang C-H, Yang Y-C, Wang I-T, Du H-Y, Wen C-Y, Shyue J-J, Chen C-W, Chen K-H, Chiu P-W, Chen L-C.  2020.  Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method, 2020. 11(1):3682. AbstractWebsite

Most chemical vapor deposition methods for transition metal dichalcogenides use an extremely small amount of precursor to render large single-crystal flakes, which usually causes low coverage of the materials on the substrate. In this study, a self-capping vapor-liquid-solid reaction is proposed to fabricate large-grain, continuous MoS2 films. An intermediate liquid phase-Na2Mo2O7 is formed through a eutectic reaction of MoO3 and NaF, followed by being sulfurized into MoS2. The as-formed MoS2 seeds function as a capping layer that reduces the nucleation density and promotes lateral growth. By tuning the driving force of the reaction, large mono/bilayer (1.1 mm/200 μm) flakes or full-coverage films (with a record-high average grain size of 450 μm) can be grown on centimeter-scale substrates. The field-effect transistors fabricated from the full-coverage films show high mobility (33 and 49 cm2 V−1 s−1 for the mono and bilayer regions) and on/off ratio (1 ~ 5 × 108) across a 1.5 cm × 1.5 cm region.

Thang, NQ, Sabbah A, Chen L-C, Chen K-H, Hai LV, Thi CM, Viet PV.  2020.  Localized surface plasmonic resonance role of silver nanoparticles in the enhancement of long-chain hydrocarbons of the CO2 reduction over Ag-gC3N4/ZnO nanorods photocatalysts, 2020. :116049. AbstractWebsite

The conversion of CO2 into hydrocarbon fuels via the photocatalytic reaction route is considered a potential strategy to concurrently address serious energy crisis and greenhouse gas emission problems. Nevertheless, the generation of long-chain hydrocarbon products (Cn, n ≥ 2) from the visible-light-reactive photocatalytic CO2 reduction has also been considering a contemporary challenge. Herein, we indicate that Ag nanoparticles (Ag NPs) loaded gC3N4/ZnO nanorods heterojunction (Ag-gC3N4/ZnO NRs abbreviation) has extended photoactive range and enhanced specific surface area. The combination of Ag NPs and gC3N4/ZnO NRs significantly enhances photocatalytic CO2 reduction efficiency to form the acetone product. Detail, the acetone production efficiency of Ag-gC3N4/ZnO NRs is 8.4 and 7.5 times higher than pure ZnO NRs and gC3N4/ZnO NRs at the same condition, respectively. This study represents a potential approach toward higher-energy-value hydrocarbons production and greenhouse gas emission mitigation.

2019
Sabhapathy, P, Liao C-C, Chen W-F, Chou T-chin, Shown I, Sabbah A, Lin Y-G, Lee J-F, Tsai M-K, Chen K-H, Chen L-C.  2019.  Highly efficient nitrogen and carbon coordinated N–Co–C electrocatalysts on reduced graphene oxide derived from vitamin-B12 for the hydrogen evolution reaction, 2019. Journal of Materials Chemistry A. 7(12):7179-7185.: The Royal Society of Chemistry AbstractWebsite

Exploring electrocatalysts composed of earth-abundant elements for a highly efficient hydrogen evolution reaction (HER) is scientifically and technologically important for electrocatalytic water splitting. In this work, we report HER properties of acid treated pyrolyzed vitamin B12 supported on reduced graphene oxide (B12/G800A) that shows an extraordinarily enhanced catalytic activity with low overpotential (115 mV vs. RHE at 10 mA cm−2), which is better than that of most traditional nonprecious metal catalysts in acidic media. Stability tests through long-term potential cycles and at a constant current density confirm the exceptional durability of the catalyst. Notably, the B12/G800A catalyst exhibits extremely high turnover frequencies per cobalt site in acid, for example, 0.85 and 11.46 s−1 at overpotentials of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Moreover, it has been conjectured that the covalency of Co–C and Co–N bonds affects HER activities by comparing the extended X-ray absorption fine structure (EXAFS) spectra of the B12/G800A. High-temperature treatment can modify the Co-corrin structure of B12 to form Co–C bonds along with Co–N, which broadens the band of cobalt, essentially lowering the d-band center from its Fermi level. The lower d-band center leads to a moderate hydrogen binding energy, which is favorable for hydrogen adsorption and desorption.

Pathak, A, Shen J-W, Usman M, Wei L-F, Mendiratta S, Chang Y-S, Sainbileg B, Ngue C-M, Chen R-S, Hayashi M, Luo T-T, Chen F-R, Chen K-H, Tseng T-W, Chen L-C, Lu K-L.  2019.  Integration of a (–Cu–S–)n plane in a metal–organic framework affords high electrical conductivity, 2019. 10(1):1721. AbstractWebsite

Designing highly conducting metal–organic frameworks (MOFs) is currently a subject of great interest for their potential applications in diverse areas encompassing energy storage and generation. Herein, a strategic design in which a metal–sulfur plane is integrated within a MOF to achieve high electrical conductivity, is successfully demonstrated. The MOF {[Cu2(6-Hmna)(6-mn)]·NH4}n (1, 6-Hmna = 6-mercaptonicotinic acid, 6-mn = 6-mercaptonicotinate), consisting of a two dimensional (–Cu–S–)n plane, is synthesized from the reaction of Cu(NO3)2, and 6,6′-dithiodinicotinic acid via the in situ cleavage of an S–S bond under hydrothermal conditions. A single crystal of the MOF is found to have a low activation energy (6 meV), small bandgap (1.34 eV) and a highest electrical conductivity (10.96 S cm−1) among MOFs for single crystal measurements. This approach provides an ideal roadmap for producing highly conductive MOFs with great potential for applications in batteries, thermoelectric, supercapacitors and related areas.

Prem Kumar, DS, Tippireddy S, Ramakrishnan A, Chen K-H, Malar P, Mallik RC.  2019.  Thermoelectric and electronic properties of chromium substituted tetrahedrite, 2019. Semiconductor Science and Technology. 34(3):035017.: IOP Publishing AbstractWebsite

Cr substituted tetrahedrites with the chemical formula Cu12−xCrxSb4S13 (x = 0.15, 0.25, 0.35, 0.5, 0.75, 1.0) have been synthesised for thermoelectric study. Cr substitutes at the Cu site to optimize the thermoelectric properties and achieve a higher figure of merit (zT). X-Ray diffraction (XRD) analysis revealed that the tetrahedrite is the major phase with minor impurity phases. Electron probe microanalysis (EPMA) shows the formation of tetrahedrite main phase with near stoichiometry and the presence of Cu3SbS4, CuSbS2 and Sb as secondary phases. X-ray photoelectron spectroscopy (XPS) shows the oxidation state of Cu, Sb and S as +1, +3 and −2, respectively, whereas for Cr, it could not be identified. Temperature-dependent magnetic susceptibility of sample x = 0.75 shows antiferromagnetic correlation originating from the Cr ion. The calculated effective magnetic moment of 2.83 μB per Cr atom indicates the presence of Cr+4 in this sample. The decrease in the electrical resistivity upon doping indicates the compensation of holes due to the substitution of Cr at the Cu site. But the x = 0.35 sample is not following the trend due to larger compensation of holes with an activation energy of 124.6 meV. The temperature-dependent behaviour of electrical resistivity shows the shift in the Fermi level from the valance band towards the band gap. The absolute Seebeck coefficient is positive throughout the temperature range and follows a similar trend as that of electrical resistivity, with the exception of the x = 0.35 sample. The electronic thermal conductivity reduces due to hole compensation caused by Cr substitution. Moreover, the substitution of Cr effectively reduces the lattice thermal conductivity due to point defect scattering of phonons. A maximum zT of 1.0 is achieved for sample x = 0.35 at 700 K.

2018
Yang, CC, Cheng CH, Chen TH, Lin YH, Chi YC, Tseng WH, Chang PH, Chen CY, Chen KH, Chen LC, Wu CI, Lin GR.  2018.  Ge-Rich SiGe Mode-Locker for Erbium-Doped Fiber Lasers, May-June 2018. IEEE Journal of Selected Topics in Quantum Electronics. 24(3):1-10. Abstract

n/a

Cheng-YingChen, Aprillia BS, Wei-ChaoChen, Teng Y-C, Chiu C-Y, Chen R-S, Hwang J-S, Chen K-H, Chen L-C.  2018.  Above 10% efficiency earth-abundant Cu2ZnSn(S,Se)4 solar cells by introducing alkali metal fluoride nanolayers as electron-selective contacts, 2018. Nano Energy. 51:597-603. AbstractWebsite

The present investigation mainly addresses the open circuit voltage (Voc) issue in kesterite based Cu2ZnSn(S,Se)4 solar cells by simply introducing alkali metal fluoride nanolayers (~ several nm NaF, or LiF) to lower the work functions of the front ITO contacts without conventional hole-blocking ZnO layers. Kelvin probe measurements confirmed that the work function of the front ITO decreases from 4.82 to 3.39 and 3.65 eV for NaF and LiF, respectively, resulting in beneficial band alignment for electron collection and/or hole blocking on top electrodes. Moreover, a 10.4% power conversion efficiency (~ 11.5% in the cell effective area) CZTSSe cell with improved Voc of up to 90 mV has been attained. This demonstration may provide a new direction of further boosting the performance of copper chalcogenide based solar cells as well.

K.P.O., M, Shown I, Chen L-C, Chen K-H, Tai Y.  2018.  Flexible sensor for dopamine detection fabricated by the direct growth of α-Fe2O3 nanoparticles on carbon cloth, 2018. Applied Surface Science. 427:387-395. AbstractWebsite

AbstractPorous α-Fe2O3 nanoparticles are directly grown on acid treated carbon cloth (ACC) using a simple hydrothermal method (denoted as ACC-α-Fe2O3) for employment as a flexible and wearable electrochemical electrode. The catalytic activity of ACC-α-Fe2O3 allowing the detection of dopamine (DA) is systematically investigated. The results showed that the ACC-α-Fe2O3 electrode exhibits impressive electrochemical sensitivity, stability and selectivity for the detection of DA. The detection limit determined with the amperometric method appears to be around 50nM with a linear range of 0.074–113μM. The impressive DA sensing ability of the as prepared ACC-α-Fe2O3 electrode is due to the good electrochemical behavior and high electroactive surface area (19.96cm2) of α-Fe2O3 nanoparticles anchored on the highly conductive ACC. It is worth noting that such remarkable sensing properties can be maintained even when the electrode is in a folded configuration.

Cheng-YingChen, Aprillia BS, Wei-ChaoChen, Teng Y-C, Chiu C-Y, Chen R-S, Hwang J-S, Chen K-H, Chen L-C.  2018.  Above 10% Efficiency Earth-abundant Cu2ZnSn(S,Se)4 Solar Cells by Introducing Alkali Metal Fluoride Nanolayers as Electron-selective Contacts. Nano Energy. :-. AbstractWebsite

Abstract The present investigation mainly addresses the open circuit voltage (Voc) issue in kesterites based Cu2ZnSn(S,Se)4 solar cells by simply introducing alkali metal fluoride nanolayers (  several nm NaF, or LiF) to lower the work functions of the front İTO\} contacts without conventional hole-blocking ZnO layers. Kelvin probe measurements confirmed that the work function of the front İTO\} decreases from 4.82 to 3.39 and 3.65 eV for NaF and LiF, respectively, resulting in beneficial band alignment for electron collection and/or hole blocking on top electrodes. Moreover, a 10.4% power conversion efficiency ( 11.5% in the cell effective area) \{CZTSSe\} cell with improved Voc of up to 90 mV has been attained. This demonstration may provide a new direction of further boosting the performance of copper chalcogenide based solar cells as well.

Chiu, J-M, Chou T-chin, Wong DP, Lin Y-R, Shen C-A, Hy S, Hwang B-J, Tai Y, Wu H-L, Chen L-C, Chen K-H.  2018.  A synergistic “cascade” effect in copper zinc tin sulfide nanowalls for highly stable and efficient lithium ion storage. Nano Energy. 44:438-446. AbstractWebsite
n/a
2017
Wei-ChaoChen, Tunuguntla V, Min-HsuehChiu, Lian-JiunLi, Shown I, Lee C-H, Hwang J-S, Chen L-C, Chen K-H.  2017.  Co-solvent effect on microwave-assisted Cu2ZnSnS4 nanoparticles synthesis for thin film solar cell. Solar Energy Materials and Solar Cells. 161:416-423.