Publications

Export 254 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G [H] I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Cheng-YingChen, Aprillia BS, Wei-ChaoChen, Teng Y-C, Chiu C-Y, Chen R-S, Hwang J-S, Chen K-H, Chen L-C.  2018.  Above 10% Efficiency Earth-abundant Cu2ZnSn(S,Se)4 Solar Cells by Introducing Alkali Metal Fluoride Nanolayers as Electron-selective Contacts. Nano Energy. :-. AbstractWebsite

Abstract The present investigation mainly addresses the open circuit voltage (Voc) issue in kesterites based Cu2ZnSn(S,Se)4 solar cells by simply introducing alkali metal fluoride nanolayers (  several nm NaF, or LiF) to lower the work functions of the front İTO\} contacts without conventional hole-blocking ZnO layers. Kelvin probe measurements confirmed that the work function of the front İTO\} decreases from 4.82 to 3.39 and 3.65 eV for NaF and LiF, respectively, resulting in beneficial band alignment for electron collection and/or hole blocking on top electrodes. Moreover, a 10.4% power conversion efficiency ( 11.5% in the cell effective area) \{CZTSSe\} cell with improved Voc of up to 90 mV has been attained. This demonstration may provide a new direction of further boosting the performance of copper chalcogenide based solar cells as well.

Cheng-YingChen, Aprillia BS, Wei-ChaoChen, Teng Y-C, Chiu C-Y, Chen R-S, Hwang J-S, Chen K-H, Chen L-C.  2018.  Above 10% efficiency earth-abundant Cu2ZnSn(S,Se)4 solar cells by introducing alkali metal fluoride nanolayers as electron-selective contacts, 2018. Nano Energy. 51:597-603. AbstractWebsite

The present investigation mainly addresses the open circuit voltage (Voc) issue in kesterite based Cu2ZnSn(S,Se)4 solar cells by simply introducing alkali metal fluoride nanolayers (~ several nm NaF, or LiF) to lower the work functions of the front ITO contacts without conventional hole-blocking ZnO layers. Kelvin probe measurements confirmed that the work function of the front ITO decreases from 4.82 to 3.39 and 3.65 eV for NaF and LiF, respectively, resulting in beneficial band alignment for electron collection and/or hole blocking on top electrodes. Moreover, a 10.4% power conversion efficiency (~ 11.5% in the cell effective area) CZTSSe cell with improved Voc of up to 90 mV has been attained. This demonstration may provide a new direction of further boosting the performance of copper chalcogenide based solar cells as well.

Chen, CW, Huang CC, Lin YY, Chen LC, Chen KH.  2005.  Affinity of Si-N and Si-C bond in the SiCN thin films - experimental and theoretical approaches. Diamond Relat. Mater.. 14:1126-1130.
Li, CL, Huang BR, Chattopadhyay* S, Chen KH, Chen LC.  2004.  Amorphous boron carbon nitride as a pH sensor. Appl. Phys. Lett.. 84:2676-2678.
Huang*, BR, Chen LC, Chen KH.  2002.  The analysis on the surface properties of the annealed-diamond membrane. Mater. Sci. and Engineer.. B 95:111-115.
Wu, CT, Chen CW, Hu MS, Chen KH, Chen LC, Chu MW, Chen CH.  2010.  Anisotropic surface plasmon excitation in Au/silica nanowire. Appl. Phys. Lett.. 96:236106.
Fu, SP, Yu CJ, Chen TT, Hsu GM, Chen MJ, Chen* LC, Chen KH, Chen YF.  2007.  Anomalous optical properties of InN nanobelts: evidence of surface band bending and photoelastic effect. Adv. Mater.. 19:4524-4529.
Chouhan, N, Yeh CL, Hu SF, Huang JH, Tsai CW, Liu RS, Chang WS, Chen KH.  2010.  Array of CdSe QD-sensitized ZnO nanorods serves as photoanode for water splitting. J. Electrochem. Soc.. 157:1430-1433.
Chouhan, N, Yeh CL, Hu SF, Huang JH, Liu RS, Chang WS, Chen KH.  2011.  Array of CdSe QD-sensitized ZnO nanorods serves as photoanode for water splitting. Chem. Commun.. 47:3493-3495.
Fang, WC, Huang JH, Sun CL, Chen* KH, Chyan OM, Wu CT, Chen CP, Chen LC.  2007.  Arrayed nanocomposites directly grown on Ti-buffered silicon substrate for miniaturized supercapacitor applications. Electrochem. Comm.. 9:239-244.
Sun, CL, Wang HW, Hayashi M, Chen LC, Chen* KH.  2006.  Atomic-scale deformation in N-doped carbon nanotubes. J. Am. Chem. Soc.. 128:8368-8369.
Qorbani, M, Sabbah A, Lai Y-R, Kholimatussadiah S, Quadir S, Huang C-Y, Shown I, Huang Y-F, Hayashi M, Chen K-H, Chen L-C.  2022.  Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst, 2022. Nature Communications. 13(1):1256. AbstractWebsite

Ascertaining the function of in-plane intrinsic defects and edge atoms is necessary for developing efficient low-dimensional photocatalysts. We report the wireless photocatalytic CO2 reduction to CH4 over reconstructed edge atoms of monolayer 2H-WSe2 artificial leaves. Our first-principles calculations demonstrate that reconstructed and imperfect edge configurations enable CO2 binding to form linear and bent molecules. Experimental results show that the solar-to-fuel quantum efficiency is a reciprocal function of the flake size. It also indicates that the consumed electron rate per edge atom is two orders of magnitude larger than the in-plane intrinsic defects. Further, nanoscale redox mapping at the monolayer WSe2–liquid interface confirms that the edge is the most preferred region for charge transfer. Our results pave the way for designing a new class of monolayer transition metal dichalcogenides with reconstructed edges as a non-precious co-catalyst for wired or wireless hydrogen evolution or CO2 reduction reactions.

Liu, YL, Hsu CW, Dhara S, Chang CW, Tsai HM, Chen LC, Chen KH, Pong* WF, Chi GC.  2013.  Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes. Nanoscale. 5:6812-6818.
Tu, WH, Hsu YK, Yen CH, Wu CI, Hwang JS, Chen LC, Chen KH.  2011.  Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation. Electrochem. Comm.. 13:530-533.
B
Chang, CK, Kataria S, Kuo CC, Ganguli A, Wang BY, Hwang JY, Huang KJ, Yang WH, Wang SB, Chuang CH, Chen M, Huang CI, Pong WF, Song KJ, Chang SJ, Guo J, Tai Y, Tsujimoto M, Isoda S, Chen CW, Chen LC, Chen KH.  2013.  Band gap engineering of chemical vapor deposited graphene by in-situ BN doping. ACS Nano. 7:1333-1341.
Shelke, AR, Wang H-T, Chiou J-W, Shown I, Sabbah A, Chen K-H, Teng S-A, Lin I-A, Lee C-C, Hsueh H-C, Liang Y-H, Du C-H, Yadav PL, Ray SC, Hsieh S-H, Pao C-W, Tsai H-M, Chen C-H, Chen K-H, Chen L-C, Pong W-F.  2022.  Bandgap Shrinkage and Charge Transfer in 2D Layered SnS2 Doped with V for Photocatalytic Efficiency Improvement. Small. n/a:2105076., Number n/a AbstractWebsite

Abstract Effects of electronic and atomic structures of V-doped 2D layered SnS2 are studied using X-ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X-ray absorption fine structure measurements at V K-edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X-ray absorption near-edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,β resonant inelastic X-ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo-excited electrons and effective carrier separation in layered SnS2. Additionally, valence-band photoemission spectra and S K-edge XANES indicate that the density of states near/at valence-band maximum is shifted to lower binding energy in V-doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first-principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V-doped SnS2.

Lee, C-P, Chen W-F, Billo T, Lin Y-G, Fu F-Y, Samireddi S, Lee C-H, Hwang J-S, Chen K-H, Chen L-C.  2016.  Beaded stream-like CoSe2 nanoneedle array for efficient hydrogen evolution electrocatalysis, 2016. Journal of Materials Chemistry A. 4(12):4553-4561.: The Royal Society of Chemistry AbstractWebsite

The development of earth-abundant and efficient electrocatalysts for the hydrogen evolution reaction (HER) is one of the keys to success for future green energy systems using hydrogen fuel. Nanostructuring of electrocatalysts is a promising way to enhance their electrocatalytic performance in the HER. In this study, pure pyrite-type beaded stream-like cobalt diselenide (CoSe2) nanoneedles are directly formed on flexible titanium foils through treating a cobalt oxide (Co3O4) nanoneedle array template with selenium vapor. The beaded stream-like CoSe2 nanoneedle electrode can drive the HER at a current density of 20 mA cm−2 with a small overpotential of 125 mV. Moreover, the beaded stream-like CoSe2 nanoneedle electrode remains stable in an acidic electrolyte for 3000 cycles and continuously splits water over a period of 18 hours. The enhanced electrochemical activity is facilitated by the unique three-dimensional hierarchical structure, the highly accessible surface active sites, the improved charge transfer kinetics and the highly attractive force between water and the surface of the nanoneedles that exceeds the surface tension of water.

Lee, CP, Chen* WF, Billo T, Lin YG, Fu FY, Samireddi S, Lee CH, Hwang JS, Chen* LC, Chen* KH.  2016.  Beaded-stream-like CoSe2 nanoneedles array for efficient hydrogen evolution electrocatalysis. J. Mater. Chem. A . 4 :4553-4561.
Wong, DP, Suriyaprabha R, Yuvakumar R, Rajendran V, Chen YT, Hwang BJ, Chen LC, Chen KH.  2014.  Binder-free rice husk-based silicon-graphene composite as energy efficient Li-ion battery anodes. J. Mater. Chem. A. 2:13437-13441.
Dhara*, S, Chandra S, Magudapathy P, Kalavathi S, Panigrahi BK, Nair KGM, Sastry VS, Hsu CW, Wu CT, Chen KH, Chen LC.  2004.  Blue luminescence of Au nanoclusters embedded in silica matrix. J. Chem. Phys.. 121:12595-12599.
Dhara, SK, Datta A, Lan ZH, Chen* KH, Wang YL, Shen CS, Chen LC, Hsu CW, Lin HM, Chen CC.  2004.  Blue shift of yellow band in self-ion beam irradiated GaN nanowires. Appl. Phys. Lett.. 84:3486-3488.
Jarwal, B, Abbas S, Chou T-L, Vailyaveettil SM, Kumar A, Quadir S, Ho T-T, Wong DP, Chen L-C, Chen K-H.  2024.  Boosting Thermoelectric Performance in Nanocrystalline Ternary Skutterudite Thin Films through Metallic CoTe2 Integration, 2024. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces. 16(12):14770-14780.: American Chemical Society AbstractWebsite
n/a
C
Fang, WC, Huang* JH, Chen LC, Su YO, H.Chen K, Sun CL.  2006.  Carbon nanotubes directly grown on Ti electrodes and enhancement in their electrochemical properties by nitric acid treatment. Electrochemical and Solid-State Lett.. 9:A5.
Chen*, LC, Chang SW, Chang CS, Wen CY, Wu J-J, Chen YF, Huang YS, Chen KH.  2001.  Catalyst-free growth of transparent SiCN nanorods. J. Phys. & Chem. of Solids. 62:1567-1576.
Muto*, S, Dhara SK, Datta A, Hsu CW, Wu CT, Shen CH, Chen LC, Chen KH, Wang YL, Tanabe T, Maruyama T, Lin HM, Chen CC.  2004.  Characterization of nanodome on GaN nanowires formed with Ga ion irradiation. Mater. Trans.. 45:435-439.