Lee, CP, Chen* WF, Billo T, Lin YG, Fu FY, Samireddi S, Lee CH, Hwang JS, Chen* LC, Chen* KH.
2016.
Beaded-stream-like CoSe2 nanoneedles array for efficient hydrogen evolution electrocatalysis. J. Mater. Chem. A . 4 :4553-4561.
Shown, I, Ganguly A, Chen L-C, Chen K-H.
2015.
Conducting polymer-based flexible supercapacitor, 2015. Energy Science & EngineeringEnergy Science & Engineering. 3(1):2-26.: John Wiley & Sons, Ltd
AbstractAbstract Flexible supercapacitors, a state-of-the-art material, have emerged with the potential to enable major advances in for cutting-edge electronic applications. Flexible supercapacitors are governed by the fundamentals standard for the conventional capacitors but provide high flexibility, high charge storage and low resistance of electro active materials to achieve high capacitance performance. Conducting polymers (CPs) are among the most potential pseudocapacitor materials for the foundation of flexible supercapacitors, motivating the existing energy storage devices toward the future advanced flexible electronic applications due to their high redox active-specific capacitance and inherent elastic polymeric nature. This review focuses on different types of CPs-based supercapacitor, the relevant fabrication methods and designing concepts. It describes recent developments and remaining challenges in this field, and its impact on the future direction of flexible supercapacitor materials and relevant device fabrications.
Du, HY, Wang CH, Yang CS, Hsu HC, Chang ST, Huang HC, Lai SW, Chen JC, Yu LT, Chen LC, Chen KH.
2014.
A high performance polybenzimidazole-CNT hybrid electrode for high-temperature proton exchange membrane fuel cells. J. of Mater. Chem. . 2:7015-7019.