Junaid, M, Lundin D, Palisaitis J, Hsiao CL, Darakchieva V, Jensen J, Persson POA, Sandstrom P, Lai WJ, Chen LC, Chen KH, Helmersson U, Hultman L, Birch J.
2011.
Two-domain formation during the epitaxial growth of GaN (0001) on c-plane Al2O3 (0001) by high power impulse magnetron sputtering. J. Appl. Phys.. 110:123519.
Chou, CT, Lin CH, Wu MH, Cheng TW, Lee JH, Liu CHJ, Tai Y, Chattopadhyay S, Wang JK, Chen KH, Chen LC.
2011.
Tuning open-circuit voltage in organic solar cells by magnesium modified Alq3. J. Appl. Phys.. 110:083104.
Chien, CT, Li SS, Lai WJ, Yeh YC, Chen HA, Chen LC, Chen KH, T.Nemoto, Isoda S, Chen M, Fujita T, Chhowalla M, Chen CW.
2012.
Tunable photoluminescence from graphene oxide. Angewandte Chemie. 51:6662-6666.
Das, S, Valiyaveettil SM, Chen K-H, Suwas S, Mallik RC.
2019.
Thermoelectric properties of Mn doped BiCuSeO, 2019. Materials Research Express. 6(8):086305.: IOP Publishing
AbstractBiCuSeO is a promising thermoelectric material having earth-abundant non-toxic constituents and favourable thermoelectric properties like ultra-low thermal conductivity. In this study, Mn+2 has been introduced at the Bi+3 site to increase hole concentration as well as Seebeck coefficient, through aliovalent doping and magnetic impurity incorporation respectively. Samples were prepared through two-step solid state synthesis with the composition Bi1-xMnxCuSeO (x = 0.0, 0.04, 0.06, 0.08, 0.10 and 0.12). X-ray diffraction patterns confirmed the tetragonal (space group: P4/nmm) crystal structure of BiCuSeO as well as phase purity of the samples. The Seebeck coefficient and electrical resistivity had a decreasing trend with increasing doping fraction owing to the generation of charge carriers. The samples with x = 0.04 and 0.06 showed temperature independent Seebeck coefficient above 523 K, which is a signature of small polaron hopping. While the Seebeck coefficient of the samples with x = 0.08, 0.10 and 0.12 increased above 523 K due to the combination of localized and extended states. The thermal conductivity was dominated by the lattice part of the thermal conductivity. As a result of moderate Seebeck coefficient and low electrical resistivity, the highest power factor of 0.284 mW m−1-K2 was obtained for the Bi0.92Mn0.08CuSeO at 773 K, leading to a maximum zT of 0.4 at 773.
Tran Nguyen, NH, Nguyen TH, Liu Y-ren, Aminzare M, Pham ATT, Cho S, Wong DP, Chen K-H, Seetawan T, Pham NK, Ta HKT, Tran VC, Phan TB.
2016.
Thermoelectric Properties of Indium and Gallium Dually Doped ZnO Thin Films, 2016. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces. 8(49):33916-33923.: American Chemical Society
Abstractn/a
Prem Kumar, DS, Tippireddy S, Ramakrishnan A, Chen K-H, Malar P, Mallik RC.
2019.
Thermoelectric and electronic properties of chromium substituted tetrahedrite, 2019. Semiconductor Science and Technology. 34(3):035017.: IOP Publishing
AbstractCr substituted tetrahedrites with the chemical formula Cu12−xCrxSb4S13 (x = 0.15, 0.25, 0.35, 0.5, 0.75, 1.0) have been synthesised for thermoelectric study. Cr substitutes at the Cu site to optimize the thermoelectric properties and achieve a higher figure of merit (zT). X-Ray diffraction (XRD) analysis revealed that the tetrahedrite is the major phase with minor impurity phases. Electron probe microanalysis (EPMA) shows the formation of tetrahedrite main phase with near stoichiometry and the presence of Cu3SbS4, CuSbS2 and Sb as secondary phases. X-ray photoelectron spectroscopy (XPS) shows the oxidation state of Cu, Sb and S as +1, +3 and −2, respectively, whereas for Cr, it could not be identified. Temperature-dependent magnetic susceptibility of sample x = 0.75 shows antiferromagnetic correlation originating from the Cr ion. The calculated effective magnetic moment of 2.83 μB per Cr atom indicates the presence of Cr+4 in this sample. The decrease in the electrical resistivity upon doping indicates the compensation of holes due to the substitution of Cr at the Cu site. But the x = 0.35 sample is not following the trend due to larger compensation of holes with an activation energy of 124.6 meV. The temperature-dependent behaviour of electrical resistivity shows the shift in the Fermi level from the valance band towards the band gap. The absolute Seebeck coefficient is positive throughout the temperature range and follows a similar trend as that of electrical resistivity, with the exception of the x = 0.35 sample. The electronic thermal conductivity reduces due to hole compensation caused by Cr substitution. Moreover, the substitution of Cr effectively reduces the lattice thermal conductivity due to point defect scattering of phonons. A maximum zT of 1.0 is achieved for sample x = 0.35 at 700 K.
Su, T-Y, Wang T-H, Wong DP, Wang Y-C, Huang A, Sheng Y-C, Tang S-Y, Chou T-chin, Chou T-L, Jeng H-T, Chen L-C, Chen K-H, Chueh Y-L.
2021.
Thermally Strain-Induced Band Gap Opening on Platinum Diselenide-Layered Films: A Promising Two-Dimensional Material with Excellent Thermoelectric Performance, 2021. Chemistry of MaterialsChemistry of Materials. 33(10):3490-3498.: American Chemical Society
Abstractn/a
Sun, CL, Hsu YK, Lin YG, Chen KH, Bock C, MacDougall B, Wu X, Chen LC.
2009.
Ternary PtRuNi nanocatalysts supported on N-doped carbon nanotubes: deposition process, materials characterization, and electrochemistry. J. Electrochem. Soc.. 156:B1249-B1252.