Kamal Hussien, M, Sabbah A, Qorbani M, Hammad Elsayed M, Quadir S, Raghunath P, Tzou D-LM, Haw S-C, Chou H-H, Thang NQ, Lin M-C, Chen L-C, Chen K-H.
2023.
Numerous defects induced by exfoliation of boron-doped g-C3N4 towards active sites modulation for highly efficient solar-to-fuel conversion, 2023. Materials Today Sustainability. 22:100359.
AbstractGraphitic carbon nitride (CN) has emerged as a highly promising material in the photocatalysis field. However, its bulk structure suffers from a lack of active sites, limiting its practical application. Herein, a boron-doped CN (BCN) was prepared by a green gas-blowing-assisted thermal polymerization and then subjected to different exfoliation processes in order to delaminate the layered structure and tune the surface-active sites. A thorough comparative study shows that thermal exfoliation creates unsaturated nitrogen sites and induces the formation of interconnected layers that act as an electron diffusion channel for better charge transport. Furthermore, the thermally exfoliated BCN is rich in structural disorders that serve as dissociation defects for photoinduced charge carriers with a low exciton binding energy of 27 meV. Experimental results supported by theoretical calculations show that the nitrogen adjacent to boron is activated by the surrounding surface amino groups and the perforated texture to serve as an active adsorption site towards CO2 and H2O. Consequently, the exfoliated BCN acts as an outstanding bifunctional photocatalyst towards CO2 reduction into CO (40.41 μmol g−1 h−1) and prominent hydrogen evolution (4740 μmol g−1 h−1, 12.2% apparent quantum yield (AQY)).
Dhara, SK, Magudapathy P, Kesavamoorthy R, Kalavathi S, Nair KGM, Hsu GM, Chen LC, Chen* KH, Santhakumar K, Soga T.
2006.
Nitrogen ion beam synthesis of InN in InP(100) at elevated temperature. Appl. Phys. Lett.. 88:241904-(1-3).
Billo, T, Fu F-Y, Raghunath P, Shown I, Chen W-F, Lien H-T, Shen T-H, Lee J-F, Chan T-S, Huang K-Y, Wu C-I, Lin MC, Hwang J-S, Lee C-H, Chen L-C, Chen K-H.
2018.
Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction. Small. 14:1702928–n/a., Number 2
AbstractOne of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. In this contribution, a combined experimental and computational study on Ni-nanocluster loaded black TiO2 (Ni/TiO2[Vo]) with built-in dual active sites for selective photocatalytic CO2 conversion is reported. The findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO2 binding sites with the lowest activation energy (0.08 eV), (2) highly reactive sites, (3) a fast electron transfer pathway, and (4) enhanced light harvesting by lowering the bandgap. The Ni/TiO2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO2 (P-25). An insight into the mechanisms of interfacial charge transfer and product formation is explored.
Wu, JJ, Lu TR, Wu CT, Wang TY, Chen LC, Chen KH, Kuo CT, Yu YC, Wang CW, Lin EK.
1999.
Nano-carbon nitride synthesis from a bio-molecular target for ion beam sputtering at low temperature. Diamond and Related Materials. 8:605-609.