Fu, F-Y, Shown I, Li C-S, Raghunath P, Lin T-Y, Billo T, Wu H-L, Wu C-I, Chung P-W, Lin M-C, Chen L-C, Chen K-H.
2019.
KSCN-induced Interfacial Dipole in Black TiO2 for Enhanced Photocatalytic CO2 Reduction, 2019. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces. 11(28):25186-25194.: American Chemical Society
Abstractn/a
Prem Kumar, DS, Tippireddy S, Ramakrishnan A, Chen K-H, Malar P, Mallik RC.
2019.
Thermoelectric and electronic properties of chromium substituted tetrahedrite, 2019. Semiconductor Science and Technology. 34(3):035017.: IOP Publishing
AbstractCr substituted tetrahedrites with the chemical formula Cu12−xCrxSb4S13 (x = 0.15, 0.25, 0.35, 0.5, 0.75, 1.0) have been synthesised for thermoelectric study. Cr substitutes at the Cu site to optimize the thermoelectric properties and achieve a higher figure of merit (zT). X-Ray diffraction (XRD) analysis revealed that the tetrahedrite is the major phase with minor impurity phases. Electron probe microanalysis (EPMA) shows the formation of tetrahedrite main phase with near stoichiometry and the presence of Cu3SbS4, CuSbS2 and Sb as secondary phases. X-ray photoelectron spectroscopy (XPS) shows the oxidation state of Cu, Sb and S as +1, +3 and −2, respectively, whereas for Cr, it could not be identified. Temperature-dependent magnetic susceptibility of sample x = 0.75 shows antiferromagnetic correlation originating from the Cr ion. The calculated effective magnetic moment of 2.83 μB per Cr atom indicates the presence of Cr+4 in this sample. The decrease in the electrical resistivity upon doping indicates the compensation of holes due to the substitution of Cr at the Cu site. But the x = 0.35 sample is not following the trend due to larger compensation of holes with an activation energy of 124.6 meV. The temperature-dependent behaviour of electrical resistivity shows the shift in the Fermi level from the valance band towards the band gap. The absolute Seebeck coefficient is positive throughout the temperature range and follows a similar trend as that of electrical resistivity, with the exception of the x = 0.35 sample. The electronic thermal conductivity reduces due to hole compensation caused by Cr substitution. Moreover, the substitution of Cr effectively reduces the lattice thermal conductivity due to point defect scattering of phonons. A maximum zT of 1.0 is achieved for sample x = 0.35 at 700 K.
Das, S, Valiyaveettil SM, Chen K-H, Suwas S, Mallik RC.
2019.
Thermoelectric properties of Mn doped BiCuSeO, 2019. Materials Research Express. 6(8):086305.: IOP Publishing
AbstractBiCuSeO is a promising thermoelectric material having earth-abundant non-toxic constituents and favourable thermoelectric properties like ultra-low thermal conductivity. In this study, Mn+2 has been introduced at the Bi+3 site to increase hole concentration as well as Seebeck coefficient, through aliovalent doping and magnetic impurity incorporation respectively. Samples were prepared through two-step solid state synthesis with the composition Bi1-xMnxCuSeO (x = 0.0, 0.04, 0.06, 0.08, 0.10 and 0.12). X-ray diffraction patterns confirmed the tetragonal (space group: P4/nmm) crystal structure of BiCuSeO as well as phase purity of the samples. The Seebeck coefficient and electrical resistivity had a decreasing trend with increasing doping fraction owing to the generation of charge carriers. The samples with x = 0.04 and 0.06 showed temperature independent Seebeck coefficient above 523 K, which is a signature of small polaron hopping. While the Seebeck coefficient of the samples with x = 0.08, 0.10 and 0.12 increased above 523 K due to the combination of localized and extended states. The thermal conductivity was dominated by the lattice part of the thermal conductivity. As a result of moderate Seebeck coefficient and low electrical resistivity, the highest power factor of 0.284 mW m−1-K2 was obtained for the Bi0.92Mn0.08CuSeO at 773 K, leading to a maximum zT of 0.4 at 773.
Wei-ChaoChen, Cheng-YingChen, Lin Y-R, Chang J-K, Chen C-H, Chiu Y-P, Wu C-I, Chen K-H, Chen L-C.
2019.
Interface engineering of CdS/CZTSSe heterojunctions for enhancing the Cu2ZnSn(S,Se)4 solar cell efficiency. Materials Today Energy. 13:256-266.
AbstractInterface engineering of CdS/CZTS(Se) is an important aspect of improving the performance of buffer/absorber heterojunction combination. It has been demonstrated that the crossover phenomenon due to the interface recombination can be drastically eliminated by interface modification. Therefore, in-depth studies across the CdS/CZTS(Se) junction properties, as well as effective optimization processes, are very crucial for achieving high-efficiency CZTSSe solar cells. Here, we present a comprehensive study on the effects of soft-baking (SB) temperature on the junction properties and the corresponding optoelectronic and interface-structural properties. Based on in-depth photoemission studies corroborated with structural and composition analysis, we concluded that interdiffusion and intermixing of CZTSSe and CdS phases occurred on the Cu-poor surface of CZTSSe at elevated SB temperatures, and the interface dipole moments induced by electrostatic potential fluctuation were thus significantly eliminated. In contrast, with low SB temperature, the CdS/CZTSSe heterojunction revealed very sharp interface with very short interdiffusion, forming interface dipole moments and drastically deteriorating device performance. These post thermal treatments also significantly suppress defect energy level of interface measured by admittance spectroscopy from 294 to 109 meV due to CdS/CZTSSe interdiffusion. Meanwhile, the interdiffusion effects on the shift of valence band maximum, conduction band minimum and band offset across the heterojunction of thermally treated CdS/CZTSSe interface are spatially resolved at the atomic scale by measuring the local density of states with cross-sectional scanning tunneling microscopy and spectroscopy. A significant enhancement in the power conversion efficiency from 4.88% to 8.48% is achieved by a facile interface engineering process allowing a sufficient intermixing of CdS/Cd and CZTSSe/Se phases without detrimental recombination centers.
Yang, CC, Cheng CH, Chen TH, Lin YH, Chi YC, Tseng WH, Chang PH, Chen CY, Chen KH, Chen LC, Wu CI, Lin GR.
2018.
Ge-Rich SiGe Mode-Locker for Erbium-Doped Fiber Lasers, May-June 2018. IEEE Journal of Selected Topics in Quantum Electronics. 24(3):1-10.
Abstract
Shown, I, Samireddi S, Chang Y-C, Putikam R, Chang P-H, Sabbah A, Fu F-Y, Chen W-F, Wu C-I, Yu T-Y, Chung P-W, Lin MC, Chen L-C, Chen K-H.
2018.
Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light, 2018. Nature Communications. 9(1):169.
AbstractPhotocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an l-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS2 (SnS2-C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS2 lattice, resulting in different photophysical properties as compared with undoped SnS2. This SnS2-C photocatalyst significantly enhances the CO2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS2-C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO2 reduction under visible light, where the in situ carbon-doped SnS2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.
K.P.O., M, Shown I, Chen L-C, Chen K-H, Tai Y.
2018.
Flexible sensor for dopamine detection fabricated by the direct growth of α-Fe2O3 nanoparticles on carbon cloth, 2018. Applied Surface Science. 427:387-395.
AbstractAbstractPorous α-Fe2O3 nanoparticles are directly grown on acid treated carbon cloth (ACC) using a simple hydrothermal method (denoted as ACC-α-Fe2O3) for employment as a flexible and wearable electrochemical electrode. The catalytic activity of ACC-α-Fe2O3 allowing the detection of dopamine (DA) is systematically investigated. The results showed that the ACC-α-Fe2O3 electrode exhibits impressive electrochemical sensitivity, stability and selectivity for the detection of DA. The detection limit determined with the amperometric method appears to be around 50nM with a linear range of 0.074–113μM. The impressive DA sensing ability of the as prepared ACC-α-Fe2O3 electrode is due to the good electrochemical behavior and high electroactive surface area (19.96cm2) of α-Fe2O3 nanoparticles anchored on the highly conductive ACC. It is worth noting that such remarkable sensing properties can be maintained even when the electrode is in a folded configuration.
Rajeev Gandhi, J, Nehru R, Chen S-M, Sankar R, Bayikadi KS, Sureshkumar P, Chen K-H, Chen L-C.
2018.
Influence of GeP precipitates on the thermoelectric properties of P-type GeTe and Ge0.9−xPxSb0.1Te compounds, 2018. CrystEngComm. 20(41):6449-6457.: The Royal Society of Chemistry
AbstractGermanium telluride (GeTe) is a very well known IV–VI group semiconducting material with the advantageous property of showing metallic conduction, which materializes from its superior carrier concentration (n) (high number of Ge vacancies). A systematic investigation into the thermoelectric properties (TEP) of GeTe was reported by way of carrier concentration (n) engineering. The present investigation focuses on studying the effects of doping (antimony – Sb) and co-doping (phosphorus – P) on the TEP of GeTe. In order to understand the system, we have prepared p-type GeTe and Ge0.9−xPxSb0.1Te (x = 0, 0.01, 0.03, or 0.05) samples via a non-equilibrium solid state melt quenching (MQ) process, followed by hot press consolidation. Temperature dependent synchrotron X-ray diffraction studies reveal a phase transition from rhombohedral to simple cubic in the Ge0.9−xPxSb0.1Te system at 573 K, which is clearly reflected in the TEP. Further high resolution transmission electron microscopy (HRTEM) studies reveal the pseudo-cubic nature of the sample. However, powder X-ray diffraction (PXRD) and field emission scanning electron microscopy (FESEM) images and energy dispersive X-ray spectroscopy (EDX) studies confirm the presence of germanium phosphide (GeP) in all P-doped samples. The presence of a secondary phase and point defects (Sb & P) enhanced the additional scattering effects in the system, which influenced the Seebeck coefficient and thermal conductivity of GeTe. A significant enhancement in the Seebeck coefficient (S) to ∼225 μV K−1 and a drastic reduction in thermal conductivity (κ) to ∼1.2 W mK−1 effectively enhanced the figure-of-merit (ZT) to ∼1.72 at 773 K for Ge0.87P0.03Sb0.1Te, which is a ∼3 fold increase for GeTe. Finally, P co-doped Ge0.9Sb0.1Te demonstrates an enhancement in ZT, making it a good candidate material for power generation applications.
Roy, PK, Haider G, Lin H-I, Liao Y-M, Lu C-H, Chen K-H, Chen L-C, Shih W-H, Liang C-T, Chen Y-F.
2018.
Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network, 2018. Advanced Optical MaterialsAdvanced Optical Materials. 6(16):1800382.: John Wiley & Sons, Ltd
AbstractAbstract Application of lasers is omnipresent in modern-day technology. However, preparation of a lasing device usually requires sophisticated design of the materials and is costly, which may limit the suitable choice of materials and the lasing wavelengths. Random lasers, on the other hand, can circumvent the aforementioned shortcomings with simpler fabrication process, lower processing cost, material flexibility for any lasing wavelengths with lower lasing threshold, providing a roadmap for the design of super-bright lighting, displays, Li-Fi, etc. In this work, ultralow-threshold random laser action from semiconductor nanoparticles assisted by a highly porous vertical-graphene-nanowalls (GNWs) network is demonstrated. The GNWs embedded by the nanomaterials produce a suitable cavity for trapping the optical photons with semiconductor nanomaterials acting as the gain medium. The observed laser action shows ultralow values of threshold energy density ≈10 nJ cm?2 due to the strong photon trapping within the GNWs. The threshold pump fluence can be further lowered to ≈1 nJ cm?2 by coating Ag/SiO2 upon the GNWs due to the combined effect of photon trapping and strong plasmonic enhancement. In view of the growing demand of functional materials and novel technologies, this work provides an important step toward realization of high-performance optoelectronic devices.
Billo, T, Fu F-Y, Raghunath P, Shown I, Chen W-F, Lien H-T, Shen T-H, Lee J-F, Chan T-S, Huang K-Y, Wu C-I, Lin MC, Hwang J-S, Lee C-H, Chen L-C, Chen K-H.
2018.
Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction. Small. 14:1702928–n/a., Number 2
AbstractOne of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. In this contribution, a combined experimental and computational study on Ni-nanocluster loaded black TiO2 (Ni/TiO2[Vo]) with built-in dual active sites for selective photocatalytic CO2 conversion is reported. The findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO2 binding sites with the lowest activation energy (0.08 eV), (2) highly reactive sites, (3) a fast electron transfer pathway, and (4) enhanced light harvesting by lowering the bandgap. The Ni/TiO2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO2 (P-25). An insight into the mechanisms of interfacial charge transfer and product formation is explored.
Fang, S-L, Chou T-chin, Samireddi S, Chen K-H, Chen L-C, Chen W-F.
2017.
Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide, 2017/03/01. Royal Society open science. 4(3):161016161016-161016.: The Royal Society Publishing
AbstractProduction of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In this study, we synthesize and study a series of catalysts based on hybrids of CoP and MoP with different Co/Mo ratio. The HER activity shows a volcano shape and reaches a maximum for Co/Mo = 1. Tafel analysis indicates a change in the dominating step of Volmer-Hyrovský mechanism. Interestingly, X-ray diffraction patterns confirmed a major ternary interstitial hexagonal CoMoP(2) crystal phase is formed which enhances the electrochemical activity.
Ebrahimi, M, Samadi M, Yousefzadeh S, Soltani M, Rahimi A, Chou T-chin, Chen L-C, Chen K-H, Moshfegh AZ.
2017.
Improved Solar-Driven Photocatalytic Activity of Hybrid Graphene Quantum Dots/ZnO Nanowires: A Direct Z-Scheme Mechanism, 2017. ACS Sustainable Chemistry & EngineeringACS Sustainable Chemistry & Engineering. 5(1):367-375.: American Chemical Society
Abstractn/a
Pathak, A, Chiou GR, Gade NR, Usman M, Mendiratta S, Luo T-T, Tseng TW, Chen J-W, Chen F-R, Chen K-H, Chen L-C, Lu K-L.
2017.
High-κ Samarium-Based Metal–Organic Framework for Gate Dielectric Applications. ACS Appl. Mater. Interfaces. 9(26):21872–21878.