Publications

Export 59 results:
Sort by: Author [ Title  (Asc)] Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Sabhapathy, P, Raghunath P, Sabbah A, Shown I, Bayikadi KS, Xie R-K, Krishnamoorthy V, Lin M-C, Chen K-H, Chen L-C.  2023.  Axial Chlorine Induced Electron Delocalization in Atomically Dispersed FeN4 Electrocatalyst for Oxygen Reduction Reaction with Improved Hydrogen Peroxide Tolerance, 2023. Small. :2303598.: John Wiley & Sons, Ltd AbstractWebsite

Abstract Atomically dispersed iron sites on nitrogen-doped carbon (Fe-NC) are the most active Pt-group-metal-free catalysts for oxygen reduction reaction (ORR). However, due to oxidative corrosion and the Fenton reaction, Fe-NC catalysts are insufficiently active and stable. Herein, w e demonstrated that the axial Cl-modified Fe-NC (Cl-Fe-NC) electrocatalyst is active and stable for the ORR in acidic conditions with high H2O2 tolerance. The Cl-Fe-NC exhibits excellent ORR activity, with a high half-wave potential (E1/2) of 0.82 V versus a reversible hydrogen electrode (RHE), comparable to Pt/C (E1/2 = 0.85 V versus RHE) and better than Fe-NC (E1/2 = 0.79 V versus RHE). X-ray absorption spectroscopy analysis confirms that chlorine is axially integrated into the FeN4. More interestingly, compared to Fe-NC, the Fenton reaction is markedly suppressed in Cl-Fe-NC. In situ electrochemical impedance spectroscopy reveals that Cl-Fe-NC provides efficient electron transfer and faster reaction kinetics than Fe-NC. Density functional theory calculations reveal that incorporating Cl into FeN4 can drive the electron density delocalization of the FeN4 site, leading to a moderate adsorption free energy of OH* (?GOH*), d-band center, and a high onset potential, and promotes the direct four-electron-transfer ORR with weak H2O2 binding ability compared to Cl-free FeN4, indicating superior intrinsic ORR activity.

B
Lee, C-P, Chen W-F, Billo T, Lin Y-G, Fu F-Y, Samireddi S, Lee C-H, Hwang J-S, Chen K-H, Chen L-C.  2016.  Beaded stream-like CoSe2 nanoneedle array for efficient hydrogen evolution electrocatalysis, 2016. Journal of Materials Chemistry A. 4(12):4553-4561.: The Royal Society of Chemistry AbstractWebsite

The development of earth-abundant and efficient electrocatalysts for the hydrogen evolution reaction (HER) is one of the keys to success for future green energy systems using hydrogen fuel. Nanostructuring of electrocatalysts is a promising way to enhance their electrocatalytic performance in the HER. In this study, pure pyrite-type beaded stream-like cobalt diselenide (CoSe2) nanoneedles are directly formed on flexible titanium foils through treating a cobalt oxide (Co3O4) nanoneedle array template with selenium vapor. The beaded stream-like CoSe2 nanoneedle electrode can drive the HER at a current density of 20 mA cm−2 with a small overpotential of 125 mV. Moreover, the beaded stream-like CoSe2 nanoneedle electrode remains stable in an acidic electrolyte for 3000 cycles and continuously splits water over a period of 18 hours. The enhanced electrochemical activity is facilitated by the unique three-dimensional hierarchical structure, the highly accessible surface active sites, the improved charge transfer kinetics and the highly attractive force between water and the surface of the nanoneedles that exceeds the surface tension of water.

Lee, CP, Chen* WF, Billo T, Lin YG, Fu FY, Samireddi S, Lee CH, Hwang JS, Chen* LC, Chen* KH.  2016.  Beaded-stream-like CoSe2 nanoneedles array for efficient hydrogen evolution electrocatalysis. J. Mater. Chem. A . 4 :4553-4561.
C
Das, CR, Hsu HC, Dhara S, Bhaduri AK, Raj B, Chen LC, Chen KH, Albert SK, Ray A, Tzeng Y.  2010.  A complete Raman mapping of phase transitions in Si under indentation. J. Raman Spectroscopy. 41:334.
Bhusari, DM, Chen CK, Chen KH, Chuang TJ, Chen LC, Lin MC.  1997.  Composition of SiCN Crystals Consisting of a Predominantly Carbon-nitride Network. J. Mater. Res.. 12:322.
Syum, Z, Billo T, Sabbah A, Venugopal B, Yu S-Y, Fu F-Y, Wu H-L, Chen L-C, Chen K-H.  2021.  Copper Zinc Tin Sulfide Anode Materials for Lithium-Ion Batteries at Low Temperature, 2021. ACS Sustainable Chemistry & EngineeringACS Sustainable Chemistry & Engineering. : American Chemical Society AbstractWebsite
n/a
Chen, LC, Chen CK, Wei SL, Bhusari DM, Chen KH, Chen YF, Jong YC, Huang YS.  1998.  Crystalline silicon carbon nitride: a wide band gap semiconductor. Appl. Phys. Lett.. 72:2463-2465.
Chen, LC, Chen CK, Wei SL, Bhusari DM, Chen KH, Chen YF, Jong YC, Huang YS.  1998.  Crystalline Silicon Carbon Nitride: A Wide Band Gap Semiconductor. Appl. Phys. Lett.. 72:2463.
E
Bayikadi, KS, Imam S, Ubaid M, Aziz A, Chen K-H, Sankar R.  2022.  Effect of aliovalent substituted highly disordered GeTe compound's thermoelectric performance, 2022. 922:166221. AbstractWebsite

As a lead-free high-performance thermoelectric material, germanium telluride (GeTe) has recently been extensively studied for mid-temperature (500–800 K) applications. The carrier concentration and the thermal conductivity are reduced for vacancy-controlled GeTe compounds compared with pristine GeTe. We explored and optimized the Ge0.9−xSb0.1PxTe (x = 0.01–0.05) material's highest thermoelectric performance at elevated temperatures. Intrinsic Ge vacancy control and manipulation of Ge (+2) with Sb/P (+3) increased the charge contribution to power factor improvement to ∼42 µWcm−1 K−2 while minimizing the lattice thermal contribution to ∼0.4 W/mK. This resulted in an increase in thermoelectric performance of ∼2.4 @ 773 K for the Ge0.88Sb0.1P0.02Te sample. The inclusion of atomically disordered Sb/P ions considerably increases the scattering effects caused by the point defect, whereas stretched grain boundaries reveal the decreased lattice thermal contribution. The current work demonstrates the effectiveness of phosphorus as a co-dopant in increasing the average thermoelectric performance (ZTavg) value over the GeTe operating temperature range.

Bhusari, DM, Yang JR, Wang TY, Chen KH, Lin ST, Chen LC.  1998.  Effect of Substrate Pretreatment and Methane Fraction on the Optical Transparency of Nano-crystalline Diamond Thin Films. J. Mater. Res.. 13:1769.
Krishnamoorthy, V, Bangolla HK, Chen C-Y, Huang Y-T, Cheng C-M, Ulaganathan RK, Sankar R, Lee K-Y, Du H-Y, Chen L-C, Chen K-H, Chen R-S.  2024.  Efficient Hydrogen Evolution Reaction in 2H-MoS2 Basal Planes Enhanced by Surface Electron Accumulation, 2024. Catalysts. 14(1) Abstract

An innovative strategy has been developed to activate the basal planes in molybdenum disulfide (MoS2) to improve their electrocatalytic activity by controlling surface electron accumulation (SEA) through aging, annealing, and nitrogen-plasma treatments. The optimal hydrogen evolution reaction (HER) performance was obtained on the surface treated with nitrogen-plasma for 120 s. An overpotential of 0.20 V and a Tafel slope of 120 mV dec−1 were achieved for the optimized condition. The angle-resolved photoemission spectroscopy measurement confirmed the HER efficiency enhanced by the SEA conjugated with the sulfur vacancy active sites in the MoS2 basal planes. This study provides new insight into optimizing MoS2 catalysts for energy applications.

Philip, J, Hess* P, Feygelson T, Butler JE, Chattopadhyay S, Chen KH, Chen LC.  2003.  Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J. Appl. Phys.. 93:2164-2171.
Das*, D, Jana M, Barua AK, Chattopadhyay S, Chen LC, Chen KH.  2002.  Electrical, thermal and structural properties of microcrystalline Si thin films. Jpn.Appl. Phys. Lett.. 41:L229-232.
Pong, WF, Chang YK, Hsieh HH, Tsai MH, Lee KH, Dann TE, Chien FZ, Tseng PK, Tsang KL, Su WK, Chen LC, Wei SL, Chen KH, Bhusari DM, Chen YF.  1998.  Electronic and Atomic Structures of Si-C-N Thin Film by X-ray-absorption Spectroscopy. J. Electron Spectroscopy and Related Pheno.. 92:115.
Chang, YK, Hsieh HH, Pong WF, Tsai MH, Lee KH, Dann TE, Chien FZ, Tseng PK, Tsang KL, Su WK, Chen LC, Wei SL, Chen KH, Bhusari DM, Chen YF.  1998.  Electronic and Atomic Structures of SiCN Thin Film by X-ray Absorption Spectroscopy and Theoretical Calculations. Phys. Rev.. B58:9018.
Ray, SC, Tsai HM, Bao CW, Chiou JW, Jan JC, Kumar K, Pong* WF, Tsai M-H, Chattopadhyay S, Chen LC, Chien SC, Lee MT, Lin ST, Chen KH.  2004.  Electronic and bonding structures of B-C-N thin films by X-ray absorption and photoemission spectroscopy. J. Appl. Phys. . 96:208-211.
Pao, CW, Babu PD, Tsai HM, Chiou JW, Ray SC, Yang SC, Chien FZ, Pong* WF, Tsai M-H, Hsu CW, Chen LC, Chen KH, Lin H-J, Lee JF, Guo JH.  2006.  Electronic structure of group-III-nitride nanorods studied by x-ray absorption, x-ray emission, and Raman spectroscopy. Appl. Phys. Lett.. 88:223113-(1-3).
Mamo, TT, Qorbani M, Hailemariam AG, Putikam R, Chu C-M, Ko T-R, Sabbah A, Huang C-Y, Kholimatussadiah S, Billo T, Kamal Hussien M, Chang S-Y, Lin M-C, Woon W-Y, Wu H-L, Wong K-T, Chen L-C, Chen K-H.  2024.  Enhanced CO2 photoreduction to CH4 via *COOH and *CHO intermediates stabilization by synergistic effect of implanted P and S vacancy in thin-film SnS2, 2024. 128:109863. AbstractWebsite

Reduction of CO2 to value-added hydrocarbons through artificial photosynthesis is one of the way to address the energy crisis and climate change issues. It is known that lowering the activation energy of CO2 molecules on the photocatalyst surface and key intermediates is crucial in photocatalytic CO2 reduction. Herein, we present phosphorus-implanted 20-nm SnS2 continuous thin film with sulfur vacancies (i.e., SV-SnS2:P where P substitutes on S sites). The fabrication process involves thermal evaporation, post-sulfurization, and ion implantation. Our gas-phase photocatalytic experiments show an enhanced and selective CO2 photoreduction to CH4 with a yield of 0.13 µmol cm−2 and selectivity of 92 % under solar-light irradiation for 4 h over an optimal ∼4.5 % P and ∼16 % SV. Experimental observations, conducted through X-ray absorption near edge, in situ near ambient pressure X-ray photoelectron, and in situ Fourier transform infrared spectroscopies, along with first-principle density functional theory calculations. Results reveal that P dopant is significantly affected by nearby SV via local charge density transfer from P to the nearest Sn and next-nearest S neighbor atoms, consequently, leads to the stabilization of *COOH and *CHO intermediates, where asterisks stand for P as the active site. Our results demonstrate how active site modulation, without using precious co-catalysts, plays a crucial role in intermediate stabilization in a wireless photocatalysis process.

Yusuf Fakhri, M, Lai W-C, Jarwal B, Hsieh W-Z, Tseng Y-H, Ho T-T, Bayikadi KS, Valiyaveettil SM, Ganesan P, Chiang C-Y, Chen L-C, Chen K-H.  2025.  Enhanced low-temperature thermoelectric properties in textured polycrystalline SnS Co-doped with Na and Ag, 2025. 1018:179124. AbstractWebsite

Tin monosulfide (SnS), an affordable group IV-VI binary compound, has emerged as a promising semiconductor due to its abundance and low toxicity. The exceptionally low thermal conductivity from the strong lattice anharmonicity makes this material suitable for thermoelectric applications. However, the poor thermoelectric properties of polycrystalline, compared to its single-crystal counterpart, remain the challenge. Furthermore, the anisotropic performance based on the sintering process complicates the preparation of this polycrystalline material. In this study, we successfully improved the electrical transport properties of polycrystalline SnS by employing the in-plane transport properties with texture modulation from hot-pressing at 973 K. This enhancement led to the high electrical conductivity of ≈ 55 S cm−1 in polycrystalline Na-doped SnS observed at room temperature. Additionally, the hole carrier concentration of p-type SnS was further optimized by co-doping of Na and Ag. Our co-doped SnS exhibits a relatively high power factor peak of ≈ 4.49 μWcm−1K−2 at 473 K. With the significant improvement of the electrical conductivities, the thermal conductivities remained unaltered. This work successfully demonstrated a substantial enhancement by ∼66.7 % in the thermoelectric figure of merit (zT) from 0.18 to 0.3 at a relatively low temperature of 573 K in polycrystalline SnS via the microstructural modification from texturing and the optimization of carrier concentration from co-doping.

Bayikadi, KS, Sankar R, Wu CT, Xia C, Chen Y, Chen L-C, Chen K-H, Chou F-C.  2019.  Enhanced thermoelectric performance of GeTe through in situ microdomain and Ge-vacancy control, 2019. Journal of Materials Chemistry A. 7(25):15181-15189.: The Royal Society of Chemistry AbstractWebsite

A highly reproducible sample preparation method for pure GeTe in a rhombohedral structure without converting to the cubic structure up to ∼500 °C is reported to show control of the Ge-vacancy level and the corresponding herringbone-structured microdomains. The thermoelectric figure-of-merit (ZT) for GeTe powder could be raised from ∼0.8 to 1.37 at high temperature (HT) near ∼500 °C by tuning the Ge-vacancy level through the applied reversible in situ route, which made it highly controllable and reproducible. The enhanced ZT of GeTe was found to be strongly correlated with both its significantly increased Seebeck coefficient (∼161 μV K−1 at 500 °C) and reduced thermal conductivity (∼2.62 W m−1 K−1 at 500 °C) for a sample with nearly vacancy-free thicker herringbone-structured microdomains in the suppressed rhombohedral-to-cubic structure phase transformation. The microdomain and crystal structures were identified with HR-TEM (high-resolution transmission electron microscopy) and powder X-ray diffraction (XRD), while electron probe micro-analysis (EPMA) was used to confirm the stoichiometry changes of Ge : Te. Theoretical calculations for GeTe with various Ge-vacancy levels suggested that the Fermi level shifts toward the valence band as a function of increasing the Ge-vacancy level, which is consistent with the increased hole-type carrier concentration (n) and effective mass (m*) deduced from the Hall measurements. The uniquely prepared sample of a near-vacancy-free GeTe in a rhombohedral structure at high temperature favoured an enhanced Seebeck coefficient in view of the converging L- and Σ-bands of the heavy effective mass at the Fermi level, while the high density domain boundaries for the domain of low carrier density were shown to reduce the total thermal conductivity effectively.

Valiyaveettil, SM, Qorbani M, Hsing C-R, Chou T-L, Paradis-Fortin L, Sabbah A, Srivastava D, Nguyen D-L, Ho T-T, Billo T, Ganesan P, Wei C-M, Chen L-C, Chen K-H.  2022.  Enhanced thermoelectric performance of skutterudite Co1−yNiySn1.5Te1.5−x with switchable conduction behavior, 2022. Materials Today Physics. 28:100889. AbstractWebsite

A fine control of carriers in solids is the most essential thing while exploring any functionality. For a ternary skutterudite like CoSn1·5Te1.5−x, which has been recently recognized as a potential material for thermoelectric conversion, the dominant carrier could be either electrons or holes via chemically tuning the quaternary Sn2Te2 rings in the structure. Both theoretical calculation and different spectroscopic probes, such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) were employed to unveil the conduction type switching details. On the other hand, a Ni-for-Co substitution was applied to enhance electronic transport, and thereby the thermoelectric power factor. Thanks to the substantial cut-off of lattice thermal conductivity by the characteristic Sn2Te2 rings in the skutterudite structure, ultimately a 70-fold increase in the dimensionless figure-of-merit (zT) is achieved at 723 K with the nominal composition Co0·95Ni0·05Sn1·5Te1.5.

Syum, Z, Billo T, Sabbah A, kumar Anbalagan A, Quadir S, Hailemariam AG, Sabhapathy P, Lee C-H, Wu H-L, Chen L-C, Chen K-H.  2023.  Enhancing the lithium-ion storage capability of Cu2ZnSnS4 anodes via a nitrogen-doped conductive support, 2023. Chemical Engineering Journal. 465:142786. AbstractWebsite

Achieving lithium-ion batteries with both excellent electrochemical performance and cycling stability is a top priority for their real-world applications. This work reports high-performance and stable Cu2ZnSnS4 (CZTS) anode materials encapsulated by nitrogen-doped carbon (CZTS@N-C) for advanced lithium-ion battery application. Ex-situ X-ray photoelectron spectroscopy and transmission electron microscopy revealed that the nitrogen-doped carbon network features a more conducive solid-electrolyte interphase that enables lower charge-transfer resistance and fast Li+ diffusion kinetics with negligible initial irreversible capacity loss. As a result, the CZTS@N-C electrode delivers a significantly enhanced capacity of 710 mAh g−1 with 73% capacity retention after 220 cycles at a current rate of 0.5 mA g−1 and superior rate performance compared to that of unmodified CZTS. Additionally, the study sheds light on the fast lithiation dynamics chemistry of CZTS@N-C through kinetics analysis, explored by in-situ Raman, ex-situ X-ray absorption, and in-situ electrochemical impedance. This study provides a new approach for fabricating high-performance, durable conductive polymer-encapsulated low-cost transition-metal-sulfide anode materials.

F
Chen, LC, Yang CY, Bhusari DM, Chen KH, Lin MC, Lin JC, Chuang TJ.  1996.  Formation of Crystalline Silicon Carbon Nitride Films by Microwave Plasma-Enhanced CVD. Diamond and Related Materials. 5:514.
Sarma, LS, Chen CH, Kumar SMS, Wang GR, Yen SC, liu DG, Sheu HS, Yu KL, Tang MT, Lee JF, Bock C, Chen KH, Hwang* BJ.  2007.  Formation of Pt-Ru nanoparticles in ethylene glycol solution: an in situ X-ray absorption spectroscopy study. Langmuir. 23:5802-5809.
G
Chen, LC, Chen CK, Bhusari DM, Chen KH, Wei SL, Chen YF, Jong YC, Lin DY, Li CF, Huang YS.  1997.  Growth of Ternary Silicon Carbon Nitride as a New Wide Band Gap Material. MRS Symp.. :Vol.468,31.