Publications

Export 10 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H [I] J K L M N O P Q R S T U V W X Y Z   [Show ALL]
I
Liao, LJ, Kang CC, Jan IS, Chen HC, Wang CL, Lou PJ, Chang TC.  2009.  Improved diagnostic accuracy of malignant neck lumps by a simple BMVC staining assay. Analyst. 134:708-711., Number 4 AbstractWebsite

A handheld device based on fluorescence of 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC) staining was established for the rapid, point-of-care screening of cancer cells (see Chang and co-workers, Analyst, 2007, 132, 745). Offering instant screening of cancer at low cost, here we apply this simple assay in clinical tests on fine needle aspirates of neck masses from 114 outpatients (115 specimens). The diagnostic accuracy of this simple method alone is ca. 80% (80/99). The combination of the BMVC test and the fine needle aspiration (FNA) cytology reduced the non-diagnosis from 17 cases in FNA cytology to 6 cases in the combined method. Moreover, an algorithm is proposed to improve the diagnostic accuracy of malignant neck lumps up to nearly 100%.

TY, T, ZF W, CH C, TC C.  2013.  In-cell optical imaging of exogenous G-quadruplex DNA by fluorogenic ligands.. Nucleic acids research. AbstractWebsite

Guanine-rich oligonucleotides (GROs) are promising therapeutic candidate for cancer treatment and other biomedical application. We have introduced a G-quadruplex (G4) ligand, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide, to monitor the cellular uptake of naked GROs and map their intracellular localizations in living cells by using confocal microscopy. The GROs that form parallel G4 structures, such as PU22, T40214 and AS1411, are detected mainly in the lysosome of CL1-0 lung cancer cells after incubation for 2 h. On the contrary, the GROs that form non-parallel G4 structures, such as human telomeres (HT23) and thrombin binding aptamer (TBA), are rarely detected in the lysosome, but found mainly in the mitochondria. Moreover, the fluorescence resonant energy transfer studies of fluorophore-labeled GROs show that the parallel G4 structures can be retained in CL1-0 cells, whereas the non-parallel G4 structures are likely distorted in CL1-0 cells after cellular uptake. Of interest is that the distorted G4 structure of HT23 from the non-parallel G4 structure can reform to a probable parallel G4 structure induced by a G4 ligand in CL1-0 living cells. These findings are valuable to the design and rationale behind the possible targeted drug delivery to specific cellular organelles using GROs.

Huang, FC, Chang CC, Wang JM, Chang TC, Lin JJ.  2012.  Induction of senescence in cancer cells by the G-quadruplex stabilizer, BMVC4, is independent of its telomerase inhibitory activity, Sep. Br J Pharmacol. 167:393-406., Number 2 AbstractWebsite

BACKGROUND AND PURPOSE: Telomerase is the enzyme responsible for extending G-strand telomeric DNA and represents a promising target for treatment of neoplasia. Inhibition of telomerase can be achieved by stabilization of G-quadruplex DNA structures. Here, we characterize the cellular effects of a novel G-quadruplex stabilizing compound, 3,6-bis(4-methyl-2-vinylpyrazinium iodine) carbazole (BMVC4). EXPERIMENTAL APPROACH: The cellular effects of BMVC4 were characterized in both telomerase-positive and alternative lengthening of telomeres (ALT) cancer cells. The molecular mechanism of how BMVC4 induced senescence is also addressed. KEY RESULTS: BMVC4-treated cancer cells showed typical senescence phenotypes. BMVC4 induced senescence in both ALT and telomerase-overexpressing cells, suggesting that telomere shortening through telomerase inhibition might not be the cause for senescence. A large fraction of DNA damage foci was not localized to telomeres in BMVC4-treated cells and BMVC4 suppressed c-myc expression through stabilizing the G-quadruplex structure located at its promoter. These results indicated that the cellular targets of BMVC4 were not limited to telomeres. Further analyses showed that BMVC4 induced DNA breaks and activation of ataxia telangiectasia-mutated mediated DNA damage response pathway. CONCLUSIONS AND IMPLICATIONS: BMVC4, a G-quadruplex stabilizer, induced senescence by activation of pathways of response to DNA damage that was independent of its telomerase inhibitory activity. Thus, BMVC4 has the potential to be developed as a chemotherapeutic agent against both telomerase positive and ALT cancer cells.

JM, W, FC H, MH K, ZF W, TY T, LC C, SJ Y, TC C, JJ L.  2014.  Inhibition of Cancer Cell Migration and Invasion through Suppressing the Wnt1-mediating Signal Pathway by G-quadruplex Structure Stabilizers. The Journal of biological chemistry.
Yang, DY, Chang TC, Sheu SY.  2007.  Interaction between human telomere and a carbazole derivative: A molecular dynamics simulation of a quadruplex stabilizer and telomerase inhibitor, Sep 27. Journal of Physical Chemistry A. 111:9224-9232., Number 38 AbstractWebsite

The mechanism of inhibition of telomerase by drugs is a key factor in an understanding of guanine-quadruplex complex stabilization during human cancer. This study describes a simulated annealing docking and molecular dynamics simulation to investigate a synthesized potent inhibitor, 3,6-bis(1-methyl-4-vinylpyridinium iodine) carbazole (BMVC), which stabilizes the quadruplex structure of the human telomeric DNA sequence d[AG(3)(T(2)AG(3))(3)] and inhibits telomerase activity. The compound was predicted to selectively interact with the quadruplex structure. During our simulation, the binding affinities were calculated and used to predict the best drug-binding sites as well as enhanced selectivity compared with other compounds. Our studies suggest that the simulation results quite coincide with the experimental results. In addition, molecular modeling shows that a 2:1 binding model involving the external binding of BMVC to both ends of the G-quartet of d[AG(3)(T(2)AG(3))(3)] is the most stable binding mode and this agrees with the absorbance titration results that show two binding sites. Of particular interest is that one pyridinium ring and carbazole moiety of the BMVC can stack well at the end of G-quartet. This implies that BMVC is a good human quadruplex stabilizer and also a good telomerase inhibitor.

Chien, CH, Chen WW, Wu JT, Chang TC.  2012.  Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy, Dec. J Biomed Opt. 17:126001., Number 12 AbstractWebsite

To improve our understanding of lipid metabolism, Drosophila is used as a model animal, and its lipid homeostasis is monitored by coherent anti-Stokes Raman scattering microscopy. We are able to achieve in vivo imaging of larval fat body (analogous to adipose tissue in mammals) and oenocytes (analogous to hepatocytes) in Drosophila larvae at subcellular level without any labeling. By overexpressing two lipid regulatory proteins--Brummer lipase (Bmm) and lipid storage droplet-2 (Lsd-2)--we found different phenotypes and responses under fed and starved conditions. Comparing with the control larva, we observed more lipid droplet accumulation by approximately twofold in oenocytes of fat-body-Bmm-overexpressing (FB-Bmm-overexpressing) mutant under fed condition, and less lipid by approximately fourfold in oenocytes of fat-body-Lsd-2-overexpressing (FB-Lsd-2-overexpressing) mutant under starved condition. Moreover, together with reduced size of lipid droplets, the lipid content in the fat body of FB-Bmm-overexpressing mutant decreases much faster than that of the control and FB-Lsd-2-overexpressing mutant during starvation. From long-term starvation assay, we found FB-Bmm-overexpressing mutant has a shorter lifespan, which can be attributed to faster consumption of lipid in its fat body. Our results demonstrate in vivo observations of direct influences of Bmm and Lsd-2 on lipid homeostasis in Drosophila larvae.

Chang, CC, Chien CW, Lin YH, Kang CC, Chang TC.  2007.  Investigation of spectral conversion of d(TTAGGG)(4) and d(TTAGGG)(13) upon potassium titration by a G-quadruplex recognizer BMVC molecule, May. Nucleic Acids Research. 35:2846-2860., Number 9 AbstractWebsite

We have introduced a G- quadruplex- binding ligand, 3,6- bis( 1- methyl- 4- vinylpyridinium) carbazole diiodide ( BMVC), to verify the major structure of d( T(2)AG(3))(4) ( H24) in potassium solution and examine the structural conversion of H24 in sodium solution upon potassium titration. The studies of circular dichroism, induced circular dichroism, spectral titration and gel competition have allowed us to determine the binding mode and binding ratio of BMVC to the H24 in solution and eliminate the parallel form as the major G- quadruplex structure. Although the mixed- type form could not be eliminated as a main component, the basket and chair forms are more likely the main components of H24 in potassium solution. In addition, the circular dichroism spectra and the job plots reveal that a longer telomeric sequence d( T(2)AG(3))(13) ( H78) could form two units of G4 structure both in sodium or potassium solutions. Of particular interest is that no appreciable change on the induced circular dichroism spectra of BMVC is found during the change of the circular dichroism patterns of H24 upon potassium titration. Considering similar spectral conversion detected for H24 and a long sequence H78 together with the G4 structure stabilized by BMVC, it is therefore unlikely that the rapid spectral conversion of H24 and H78 is due to structural change between different types of the G4 structures. With reference to the circular dichroism spectra of d( GAA)(7) and d( GAAA)(5), we suggest that the spectral conversion of H24 upon potassium titration is attributed to fast ion exchange resulting in different loop base interaction and various hydrogen bonding effects.

Chang, CC, Chien CW, Lin YH, Kang CC, Chang TC.  2007.  Investigation of spectral conversion of d(TTAGGG)4 and d(TTAGGG)13 upon potassium titration by a G-quadruplex recognizer BMVC molecule. Nucleic Acids Res. 35:2846-60., Number 9 AbstractWebsite

We have introduced a G-quadruplex-binding ligand, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC), to verify the major structure of d(T2AG3)4 (H24) in potassium solution and examine the structural conversion of H24 in sodium solution upon potassium titration. The studies of circular dichroism, induced circular dichroism, spectral titration and gel competition have allowed us to determine the binding mode and binding ratio of BMVC to the H24 in solution and eliminate the parallel form as the major G-quadruplex structure. Although the mixed-type form could not be eliminated as a main component, the basket and chair forms are more likely the main components of H24 in potassium solution. In addition, the circular dichroism spectra and the job plots reveal that a longer telomeric sequence d(T2AG3)13 (H78) could form two units of G4 structure both in sodium or potassium solutions. Of particular interest is that no appreciable change on the induced circular dichroism spectra of BMVC is found during the change of the circular dichroism patterns of H24 upon potassium titration. Considering similar spectral conversion detected for H24 and a long sequence H78 together with the G4 structure stabilized by BMVC, it is therefore unlikely that the rapid spectral conversion of H24 and H78 is due to structural change between different types of the G4 structures. With reference to the circular dichroism spectra of d(GAA)7 and d(GAAA)5, we suggest that the spectral conversion of H24 upon potassium titration is attributed to fast ion exchange resulting in different loop base interaction and various hydrogen bonding effects.

Chang, TC, Yang YP, Huang KH, Chang CC, Hecht C.  2005.  Investigation of thionin-DNA interaction by satellite hole spectroscopy, May. Optics and Spectroscopy. 98:655-660., Number 5 AbstractWebsite

The interactions of the two tautomers of thionin dye with DNA have been investigated by using satellite hole burning spectroscopy. Similar features in the absorption and satellite hole spectra of thionin in the presence of calf thymus (CT) DNA and polynucleotides [d(GC)(6)](2) (GC) suggested that thionin preferentially binds to GC rather than polynucleotides [d(AT)(6)](2) (AT). Different binding effects of the two tautomers to DNA could be observed. While the imino form fully intercalates into the DNA base pairs, the amino form is only partially intercalated. In addition, a broad hole associated with an antihole appeared in the presence of DNA, particularly in GC base pairs. The coincidence of the antihole with the absorption band of the amino form showed that the amino form is the photoproduct of the imino form. An increase in intensity of the broad hole and its antihole and the loss of nonresonant hole intensity upon interaction with CT DNA could be described by rapid ground state recovery resulting from fast charge transfer between the intercalated thionin and a guanine base quenching the internal conversion. (c) 2005 Pleiades Publishing, Inc.

Kao, WC, Wang VCC, Huang YC, Yu SSF, Chang TC, Chan SI.  2008.  Isolation, purification and characterization of hemerythrin from Methylococcus capsulatus (Bath), Aug. Journal of Inorganic Biochemistry. 102:1607-1614., Number 8 AbstractWebsite

Earlier work from our laboratory has indicated that a hemerythrin-like protein was over-produced together with the particulate methane monooxygenase (pMMO) when Methylococcus capsulatus (Bath) was grown under high copper concentrations. A homologue of hemerythrin had not previously been found in any prokaryote. To confirm its identity as a hemerythrin, we have isolated and purified this protein by ion-exchange, gel-filtration and hydrophobic interaction chromatography, and characterized it by mass spectrometry, UV-visible, CD, EPR and resonance Raman spectroscopy. On the basis of biophysical and multiple sequence alignment analysis, the protein isolated from M. capsulatus (Bath) is in accord with hemerythrins previously reported from higher organisms. Determination of the Fe content in conjunction with molecular-weight estimation and mass analysis indicates that the native hemerythrin in M. capsulatus (Bath) is a monomer with molecular mass 14.8 kDa, in contrast to hemerythrins from other eukaryotic organisms, where they typically exist as a tetramer or higher oligomers. (c) 2008 Elsevier Inc. All rights reserved.