Publications

Export 9 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
PT, L, ZF W, IT C, YM K, MH L, MC H, PC C, TC C, CT C.  2017.  Expression of the human telomerase reverse transcriptase gene is modulated by quadruplex formation in its first exon due to DNA methylation. J Biol Chem.20859-2087. 292(51):20859-20870.
2016
2015
MH, K, ZF W, TY T, MH L, ST H, JJ L, TC C.  2015.  Conformational transition of a hairpin structure to G-quadruplex within the WNT1 gene promoter. J Am Chem Soc. 137(1):210-8.
WC, H, TY T, YT C, CC C, ZF W, CL W, TN H, PT L, CT C, JJ L, PJ L, TC C.  2015.  Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents. Nucleic Acids Res.. 43(21):10102-13.
2014
JM, W, FC H, MH K, ZF W, TY T, LC C, SJ Y, TC C, JJ L.  2014.  Inhibition of Cancer Cell Migration and Invasion through Suppressing the Wnt1-mediating Signal Pathway by G-quadruplex Structure Stabilizers. The Journal of biological chemistry.
ZF, W, MH L, ST H, TC C.  2014.  Structural basis of sodium-potassium exchange of a human telomeric DNA quadruplex without topological conversion. Nucleic acids research,. 42(7):4723-4733.
MH, L, ZF W, MH K, ST H, TC C.  2014.  Unfolding kinetics of human telomeric g-quadruplexes studied by NMR spectroscopy. The journal of physical chemistry. B. 118(4):931-6.
2013
CC, K, WC H, CW K, ZF W, CC C, CC C, CL W, TC C, J S, LJ H.  2013.  Chemical principles for the design of a novel fluorescent probe with high cancer-targeting selectivity and sensitivity.. Integrative biology : quantitative biosciences from nano to macro. 5(10):1217-28. AbstractWebsite

Understanding of principles governing selective and sensitive cancer targeting is critical for development of chemicals for cancer diagnostics and treatment. We determined the underlying mechanisms of how a novel fluorescent small organic molecule, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC), selectively labels cancer cells but not normal cells. We show that BMVC is retained in the lysosomes of normal cells. In cancer cells, BMVC escapes lysosomal retention and localizes to the mitochondria or to the nucleus, where DNA-binding dramatically increases BMVC fluorescence intensity, allowing it to light up only cancer cells. Structure-function analyses of BMVC derivatives show that hydrogen-bonding capacity is a key determinant of lysosomal retention in normal cells, whereas lipophilicity directs these derivatives to the mitochondria or the nucleus in cancer cells. In addition, drug-resistant cancer cells preferentially retain BMVC in their lysosomes compared to drug-sensitive cancer cells, and BMVC can be released from drug-resistant lysosomes using lysosomotropic agents. Our results further our understanding of how properties of cellular organelles differ between normal and cancer cells, which can be exploited for diagnostic and/or therapeutic use. We also provide physiochemical design principles for selective targeting of small molecules to different organelles. Moreover, our results suggest that agents which can increase lysosomal membrane permeability may re-sensitize drug-resistant cancer cells to chemotherapeutic agents.

TY, T, ZF W, CH C, TC C.  2013.  In-cell optical imaging of exogenous G-quadruplex DNA by fluorogenic ligands.. Nucleic acids research. AbstractWebsite

Guanine-rich oligonucleotides (GROs) are promising therapeutic candidate for cancer treatment and other biomedical application. We have introduced a G-quadruplex (G4) ligand, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide, to monitor the cellular uptake of naked GROs and map their intracellular localizations in living cells by using confocal microscopy. The GROs that form parallel G4 structures, such as PU22, T40214 and AS1411, are detected mainly in the lysosome of CL1-0 lung cancer cells after incubation for 2 h. On the contrary, the GROs that form non-parallel G4 structures, such as human telomeres (HT23) and thrombin binding aptamer (TBA), are rarely detected in the lysosome, but found mainly in the mitochondria. Moreover, the fluorescence resonant energy transfer studies of fluorophore-labeled GROs show that the parallel G4 structures can be retained in CL1-0 cells, whereas the non-parallel G4 structures are likely distorted in CL1-0 cells after cellular uptake. Of interest is that the distorted G4 structure of HT23 from the non-parallel G4 structure can reform to a probable parallel G4 structure induced by a G4 ligand in CL1-0 living cells. These findings are valuable to the design and rationale behind the possible targeted drug delivery to specific cellular organelles using GROs.