Publications

Export 5 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V [W] X Y Z   [Show ALL]
W
Wang, ZF, Chang TC.  2012.  Molecular engineering of G-quadruplex ligands based on solvent effect of polyethylene glycol, Sep 1. Nucleic Acids Res. 40:8711-20., Number 17 AbstractWebsite

Because various non-parallel G-quadruplexes of human telomeric sequences in K+ solution can be converted to a parallel G-quadruplex by adding polyethylene glycol (PEG) as a co-solvent, we have taken advantage of this property of PEG to study the covalent attachment of a PEG unit to a G-quadruplex ligand, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC). The hybrid ligand with the PEG unit, BMVC-8C3O or BMVC-6C2O by substituting either the tetraethylene glycol or the triethylene glycol terminated with a methyl-piperidinium cation in N-9 position of BMVC, not only induces structural change from different non-parallel G-quadruplexes to a parallel G-quadruplex but also increases the melting temperature of human telomeres in K+ solution by more than 45 degrees C. In addition, our ligand work provides further confidence that the local water structure plays the key to induce conformational change of human telomere.

WC, H, TY T, YT C, CC C, ZF W, CL W, TN H, PT L, CT C, JJ L, PJ L, TC C.  2015.  Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents. Nucleic Acids Res.. 43(21):10102-13.
Wei, PC, Wang ZF, Lo WT, Su MI, Shew JY, Chang TC, Lee WH.  2013.  A cis-element with mixed G-quadruplex structure of NPGPx promoter is essential for nucleolin-mediated transactivation on non-targeting siRNA stress, Feb. Nucleic Acids Research. 41:1533-1543., Number 3 AbstractWebsite

We reported that non-targeting siRNA (NT-siRNA) stress induces non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx) expression to cooperate with exoribonuclease XRN2 for releasing the stress [Wei,P.C., Lo,W.T., Su,M.I., Shew,J.Y. and Lee, W. H. (2011) Non-targeting siRNA induces NPGPx expression to cooperate with exoribonuclease XRN2 for releasing the stress. Nucleic Acids Res., 40, 323-332]. However, how NT-siRNA stress inducing NPGPx expression remains elusive. In this communication, we showed that the proximal promoter of NPGPx contained a mixed G-quadruplex (G4) structure, and disrupting the structure diminished NT-siRNA induced NPGPx promoter activity. We also demonstrated that nucleolin (NCL) specifically bonded to the G4-containing sequences to replace the originally bound Sp1 at the NPGPx promoter on NT-siRNA stress. Consistently, overexpression of NCL further increased NPGPx promoter activity, whereas depletion of NCL desensitized NPGPx promoter to NT-siRNA stress. These results suggest that the cis-element with mixed G4 structure at the NPGPx promoter plays an essential role for its transactivation mediated by NCL to release cells from NT-siRNA stress.

WW, C, CH C, CL W, HH W, YL W, ST D, TS L, TC C.  2013.  Automated quantitative analysis of lipid accumulation and hydrolysis in living macrophages with label-free imaging.. Analytical and bioanalytical chemistry. AbstractWebsite

The accumulation of lipids in macrophages is a key factor that promotes the formation of atherosclerotic lesions. Several methods such as biochemical assays and neutral lipid staining have been used for the detection of lipids in cells. However, a method for real-time quantitative assessment of the lipid content in living macrophages has yet to be shown, particularly for its kinetic process with drugs, due to the lack of suitable tools for non-invasive chemical detection. Here we demonstrate label-free real-time monitoring of lipid droplets (LDs) in living macrophages by using coherent anti-Stokes Raman scattering (CARS) microscopy. In addition, we have established an automated image analysis method based on maximum entropy thresholding (MET) to quantify the cellular lipid content. The result of CARS image analysis shows a good correlation (R 2 > 0.9) with the measurement of biochemical assay. Using this method, we monitored the processes of lipid accumulation and hydrolysis in macrophages. We further characterized the effect of a lipid hydrolysis inhibitor (diethylumbelliferyl phosphate, DEUP) and determined the kinetic parameters such as the inhibition constant, K i. Our work demonstrates that the automated quantitative analysis method is useful for the studies of cellular lipid metabolism and has potential for preclinical high-throughput screening of therapeutic agents related to atherosclerosis and lipid-associated disorders.