Publications

Export 6 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
E
Wei, C. M., & Chou M. Y. (2003).  Effects of the substrate on quantum well states: A first-principles study for Ag/Fe(100). Physical Review B. 68, 5., Sep, Number 12 AbstractWebsite

We have studied the properties of quantum well states in supported Ag(100) films on the Fe substrate by first-principles density-functional calculations. The energies of these quantum well states as a function of thickness N are examined in terms of the characteristic phase shift of the electronic wave function at the interface. These energy-dependent phase shifts are determined numerically for both the film-substrate and film-vacuum interfaces. It is also found that the substrate has a major effect on film stability, enhancing the stability of the N=5 film and reversing that of the N=2 film.

Wei, C. M., Hong I. H., Jeng P. R., Shyu S. C., & Chou Y. C. (1994).  ELECTRON-EMISSION HOLOGRAPHY - A NEW DIRECT METHOD FAR SURFACE STRUCTURAL DETERMINATION. Chemical Physics Letters. 228, 513-518., Oct, Number 6 AbstractWebsite

Direct inversion of measured Kikuchi and simulated photoelectron diffraction patterns shows clear images of the neighboring atoms within the range of the electron mean free path. More than ten nearby atoms are obtained for the Ag(100), Si(100) and (2X1) Na/Si(100) systems by the integral-energy phase-summing method. The key point in removing artifacts is a correct role of background subtraction. When this is achieved, the three-dimensional images are essentially high fidelity and artifact free. This demonstrates that electron-emission holography can be used as a direct local structural probe.

D. V. Gruznev, L. V. Bondarenko, M. T. A. H. W. E. A. V. A. Y., & A. V. Matetskiy T. A. Y. (2015).  Electronic band structure of a Tl/Sn atomic sandwich on Si(111). PHYSICAL REVIEW B. 91, 035421. Abstract
n/a
Lee, H. - W., Hsing C. - R., Chang C. - M., & Wei C. - M. (2020).  Electronic structures of 24-valence-electron full Heusler compounds investigated by density functional and GW calculations. Journal of Physics: Condensed Matter. 32, 175501. Abstract

n/a

Miyata, N., Horikoshi K., Hirahara T., Hasegawa S., Wei C. M., & Matsuda I. (2008).  Electronic transport properties of quantum-well states in ultrathin Pb (111) films. Physical Review B. 78, 6., Dec, Number 24 AbstractWebsite

Electrical conduction mechanism in ultrathin Pb (111) films formed on the Si(111)root 3x root 3-Pb surface has been investigated by means of in situ conductivity measurements, angle-resolved photoemission spectroscopy, and first-principles calculations. To investigate the origin of the bilayer oscillation observed in the present conductivity measurement, we perform some simulations based on the calculated band structure. They reveal that the density of states near the Fermi level cannot explain the bilayer oscillation, therefore, exclusively assigning it to the relaxation time. Surface roughness during the bilayer film growth seems to play a crucial role in the bilayer oscillation of the relaxation time.

Wang, S. - W., Hsing C. - R., & Wei C. - M. (2018).  Expedite random structure searching using objects from Wyckoff positions. JOURNAL OF CHEMICAL PHYSICS. 148, 054101.