Publications

Export 450 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Du, HY, Wang CH, Hsu HC, Chang ST, Yen SC, Chen LC, Viswanathan B, Chen* KH.  2011.  High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell. J. Mater. Chem.. 21:2512-2516.
Wang, CH, Du H-Y, Tsai YT, Chen CP, Huang CJ, Chen LC, Chen* KH, Shih HC.  2007.  High performance of low electrocatalysts loading on CNT directly grown on carbon for DMFC. J. Power Sources. 171:55-62.
Du, HY, Wang CH, Yang CS, Hsu HC, Chang ST, Huang HC, Lai SW, Chen JC, Yu LT, Chen LC, Chen KH.  2014.  A high performance polybenzimidazole-CNT hybrid electrode for high-temperature proton exchange membrane fuel cells. J. of Mater. Chem. . 2:7015-7019.
Lin, CH, Chen RS, Chen TT, Chen HY, Chen* YF, Chen KH, Chen LC.  2008.  High photocurrent gain in SnO2 nanowires. Appl. Phys. Lett.. 93:112115.
T.R. Lu, Kuo* CT, Yang JR, Chen LC, Chen KH, Chen TM.  1999.  High purity nano-crystalline carbon nitride films prepared at ambient temperature by ion beam sputtering. Surface and Coatings Technology . 115:116-122.
Hsu, Y-K, Chen Y-C, Lin Y-G, Chen L-C, Chen K-H.  2012.  High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution. Journal of Materials Chemistry. 22:3383-3387.
Thang, NQ, Sabbah A, Chen L-C, Chen K-H, Thi CM, Viet PV.  2021.  High-efficient photocatalytic degradation of commercial drugs for pharmaceutical wastewater treatment prospects: A case study of Ag/g-C3N4/ZnO nanocomposite materials, 2021. Chemosphere. 282:130971. AbstractWebsite

Pharmaceutical drugs' removal from wastewater by photocatalytic oxidation process is considered as an attractive approach and environmentally friendly solution. This report aims to appraise the practical application potential of Ag/g-C3N4/ZnO nanorods toward the wastewater treatment of the pharmaceutical industry. The catalysts are synthesized by straightforward and environmentally-friendly strategies. Specifically, g-C3N4/ZnO nanorods heterostructure is constructed by a simple self-assembly method, and then Ag nanoparticles are decorated on g-C3N4/ZnO nanorods by a photoreduction route. The results show that three commercial drugs (paracetamol, amoxicillin, and cefalexin) with high concentration (40 mg L−1) are significantly degraded in the existence of a small dosage of Ag/g-C3N4/ZnO nanorods (0.08 g L−1). The Ag/g-C3N4/ZnO nanorods photocatalyst exhibits degradation performance of paracetamol higher 3.8, 1.8, 1.3 times than pristine g-C3N4, ZnO nanorods, and g-C3N4/ZnO nanorods. Furthermore, Ag/g-C3N4/ZnO nanorods have an excellent reusability and a chemical stability that achieved paracetamol degradation efficiency of 78% and remained chemical structure of the photocatalyst after five cycles. In addition, the photocatalytic mechanism explanation and comparison of photocatalytic drugs’ degradation ability have also been discussed in this study.

Chen, RS, Yang TH, Chen HY, Chen* LC, Chen* KH, Yang YJ, Su CH, Lin CR.  2009.  High-gain photoconductivity in semiconducting InN nanowires. Appl. Phys. Lett.. 95:162112.
Hsiao, CL, Liu TW, Wu CT, Hsu HC, Chen* LC, Hsiao WY, Yang CC, Gällström A, Holtz P, Hsu GM, Chen* KH.  2008.  High-phase-purity zinc-blende InN on r-plane sapphire substrate with controlled nitridation pretreatment. Appl. Phys. Lett.. 92:111914.
Chen, KH, Lai YL, Chen LC, Wu JY, Kao FJ.  1995.  High-temperature Raman Study in CVD Diamond. Thin Solid Films. 270:143.
Pathak, A, Chiou GR, Gade NR, Usman M, Mendiratta S, Luo T-T, Tseng TW, Chen J-W, Chen F-R, Chen K-H, Chen L-C, Lu K-L.  2017.  High-κ Samarium-Based Metal–Organic Framework for Gate Dielectric Applications. ACS Appl. Mater. Interfaces. 9(26):21872–21878.
Sabhapathy, P, Liao C-C, Chen W-F, Chou T-chin, Shown I, Sabbah A, Lin Y-G, Lee J-F, Tsai M-K, Chen K-H, Chen L-C.  2019.  Highly efficient nitrogen and carbon coordinated N–Co–C electrocatalysts on reduced graphene oxide derived from vitamin-B12 for the hydrogen evolution reaction, 2019. Journal of Materials Chemistry A. 7(12):7179-7185.: The Royal Society of Chemistry AbstractWebsite

Exploring electrocatalysts composed of earth-abundant elements for a highly efficient hydrogen evolution reaction (HER) is scientifically and technologically important for electrocatalytic water splitting. In this work, we report HER properties of acid treated pyrolyzed vitamin B12 supported on reduced graphene oxide (B12/G800A) that shows an extraordinarily enhanced catalytic activity with low overpotential (115 mV vs. RHE at 10 mA cm−2), which is better than that of most traditional nonprecious metal catalysts in acidic media. Stability tests through long-term potential cycles and at a constant current density confirm the exceptional durability of the catalyst. Notably, the B12/G800A catalyst exhibits extremely high turnover frequencies per cobalt site in acid, for example, 0.85 and 11.46 s−1 at overpotentials of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Moreover, it has been conjectured that the covalency of Co–C and Co–N bonds affects HER activities by comparing the extended X-ray absorption fine structure (EXAFS) spectra of the B12/G800A. High-temperature treatment can modify the Co-corrin structure of B12 to form Co–C bonds along with Co–N, which broadens the band of cobalt, essentially lowering the d-band center from its Fermi level. The lower d-band center leads to a moderate hydrogen binding energy, which is favorable for hydrogen adsorption and desorption.

Chen, YC, Hsu YK, Lin YG, Lin YK, Horng YY, Chen LC, Chen KH.  2011.  Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode. Electrochem. Acta. 56:7124-7130.
Chang, H-C, Chen T-H, Sankar R, Yang Y-J, Chen L-C, Chen K-H.  2020.  Highly improved thermoelectric performance of BiCuTeO achieved by decreasing the oxygen content, 2020. 15:100248. AbstractWebsite

BiCuTeO is a promising thermoelectric material owing to its intrinsically low thermal conductivity and high carrier concentration. This study investigated the influence of stoichiometric oxygen deficiencies on the thermoelectric performance of BiCuTeO. Bulk BiCuTeO1−x (0.16 ≥ x) samples were prepared by a conventional solid state reaction and pelleted by hot pressing. Synchrotron X-ray diffraction, electron probe X-ray microanalysis, scanning electron microscopy, and transmission electron microscopy characterized the samples. A maximum value of 1.06 was achieved for the dimensionless figure of merit ZT at 673 K for BiCuTeO0.88, which is approximately 49% better than the current maximal ZT value for BiCuTeO. The power factor was noticeably improved owing to increases in the electrical conductivity and Seebeck coefficient. Moreover, the optimal oxygen deficiency could introduce nanoparticles, resulting in reduced thermal conductivity. The findings will be important for the future development of metal oxide thermoelectric materials for use in practical thermoelectric devices.

Nataraj, SK, Wang CH, Huang HC, Du HY, Wang SF, Chen YC, Chen LC, Chen KH.  2012.  Highly proton-selective biopolymer layer-coated ion-exchange membrane for direct methanol fuel cells. ChemSusChem.. 5:392-395.
Bhusari, DM, Chen KH, Yang TR, Lin ST, Wang TY, Chen LC.  1998.  Highly transparent nano-crystalline diamond films grown by microwave CVD. Solid State Comm.. 107:301-305.
Chen*, KH, Bhusari DM, Yang JR, Lin ST, Wang TY, Chen LC.  1998.  Highly transparent nano-crystalline diamond films via substrate pretreatment and methane fraction optimization. Thin Solid Films. 332:34-39.
Yang, MD, Hu CH, Shen* JL, Lan SM, Huang PJ, Chi GC, Chen KH, Chen LC, Lin YT.  2008.  Hot Photoluminescence in Gamma In2Se3 Nanorods. Nanoscale Res. Lett.. 3:427.
Samireddi, S, Shown I, Shen T-H, Huang H-C, Wong K-T, Chen L-C, Chen K-H.  2017.  Hybrid bimetallic-N4 electrocatalyst derived from a pyrolyzed ferrocene–Co-corrole complex for oxygen reduction reaction. Journal of Materials Chemistry A. 5:9279-9286.
I
Hwang, JS, Lin YH, Hwang JY, Chang R, Chattopadhyay S, Chen CJ, Chen P, Chiang HP, Tsai TR, Chen LC, Chen KH.  2013.  Imaging layer number and stacking order through formulating Raman fingerprints obtained from hexagonal single crystals of few layer graphene. Nanotechnology. 24:015702.
Quadir, S, Qorbani M, Lai Y-R, Sabbah A, Thong H–T, Hayashi M, Chen C–Y, Chen K–H, Chen L–C.  2021.  Impact of Cation Substitution in (AgxCu1−x)2ZnSnSe4 Absorber-Based Solar Cells toward 10% Efficiency: Experimental and Theoretical Analyses, 2021. Solar RRLSolar RRL. n/a(n/a):2100441.: John Wiley & Sons, Ltd AbstractWebsite

Solar cells based on kesterite Cu2ZnSnSe4 (CZTSe) compounds with earth-abundant elements are highly desirable for the low-cost and high-efficiency production of renewable energy. However, the occurrence of intrinsic defects substantially impairs the photovoltaic properties of CZTSe. Herein, a cation substitution method to control and passivate the defect states in bandgap of kesterite CZTSe by incorporating Ag ions is introduced. Intensity-dependent low-temperature photoluminescence measurements show that Ag incorporation can reduce the density and depth of intrinsic defects in CZTSe. The results reveal that 10% Ag-alloyed CZTSe provides the shallowest defect states and less nonradiative recombination. It is also confirmed by first-principles calculations that Ag incorporation enables the formation and suppresses the beneficial and detrimental defects, respectively. Based on the theoretical results, the observed subband photoluminescence peaks can be assigned to the intrinsic point and cluster defects. The best power conversion efficiency of 10.2% is achieved for the 10% Ag-alloyed CZTSe cell, along with an enhanced open-circuit voltage. These results open up a new avenue for further improving the performances of CZTSe-based device via defect engineering.

Kuo, CT, Lu TR, Chen LC, Chen KH.  2000.  Implication from using two different bio-molecular materials to synthesize crystalline carbon nitride films. J. Vac. Sci. Tech. B. 18:1207.
Huang, YF, Chattopadhyay S, Jen YJ, Peng CY, Liu TA, Hsu YK, Pan CL, Lo HC, Hsu CH, Chang YH, Lee CS, Chen KH, Chen LC.  2007.  Improved broadband, and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotechnology. 2:770-774.
Ebrahimi, M, Samadi M, Yousefzadeh S, Soltani M, Rahimi A, Chou T-chin, Chen L-C, Chen K-H, Moshfegh AZ.  2017.  Improved Solar-Driven Photocatalytic Activity of Hybrid Graphene Quantum Dots/ZnO Nanowires: A Direct Z-Scheme Mechanism, 2017. ACS Sustainable Chemistry & EngineeringACS Sustainable Chemistry & Engineering. 5(1):367-375.: American Chemical Society AbstractWebsite
n/a