Publications

Export 466 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Chattopadhyay*, S, Shi SC, Lan ZH, Chen CF, Chen KH, Chen LC.  2005.  Molecular sensing with ultrafine silver crystals on hexagonal aluminum nitridenanorodtemplate. J. Am. Chem. Soc.. 127:2820-2821.
Chattopadhyay*, S, Lo HC, Hsu CH, Chen LC, Chen KH.  2005.  Surface enhanced Raman spectroscopy using self assembled silver nanoparticulates on silicon nanotips. Chem. Mater.. 17:553-559.
Chen, WC, Lien HT, Cheng TW, Su C, Chong CW, Ganguly A, Chen KH, Chen* LC.  2015.  Side Group of Poly(3-alkylthiophene)s Controlled Dispersion of Single-Walled Carbon Nanotubes for Transparent Conducting Film. ACS Appl. Mater. & Inter. . 7:4616.
Chen, CH, Chen YF, Lan ZH, Chen LC, Chen KH, Jiang HX, Lin JY.  2004.  Mechanism of enhanced luminescence in InxAlyGa1–x–yN quaternary epilayers. Appl. Phys. Lett.. 84:1480-1482.
Chen, YC, Lin YG, Hsu YK, Yen SC, Chen KH, Chen LC.  2014.  Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. Small . 10:3803–3810.
Chen, J-C, Hsiao Y-R, Liu Y-C, Chen P-Y, Chen K-H.  2019.  Polybenzimidazoles containing heterocyclic benzo[c]cinnoline structure prepared by sol-gel process and acid doping level adjustment for high temperature PEMFC application, 2019. 182:121814. AbstractWebsite

Polybenzimidazoles containing heterocyclic benzo[c]cinnoline structure are synthesized from 3,8-benzo[c]cinnoline dicarboxylic acid, terephthalic acid and 3,3′-diaminobenzidine. Their membranes are prepared by sol-gel process, involving the conversion of polymer solution in polyphosphoric acid to phosphoric acid. The acid doping levels of the as-prepared membranes increase as the contents of benzo[c]cinnoline increase, indicating good interaction between phosphoric acid and benzo[c]cinnoline structure. The as-prepared membranes with high acid doping levels might lead to the dissolution of membranes in phosphoric acid at temperature higher than 120 °C. A new method is proposed to adjust acid doping levels by immersing the as-prepared membranes in diluted phosphoric acid solutions of various concentrations. The adjusted membranes (acid doping levels around 30 PA RU−1) exhibit enhanced mechanical properties with tensile strength in the range of 4.1–5.2 MPa. The proton conductivity of adjusted membranes maintain at 0.15–0.17 S cm−1 at 160 °C under ambient atmosphere without humidification. The single cells based on the adjusted membranes exhibit open circuit voltages and peak power densities from 0.89 to 0.91 V and 691–1253 mW cm−2 at 160 °C, respectively. Compared to other polybenzimidazole membranes prepared by sol-gel process, the adjusted polybenzimidazoles show higher mechanical strength and better single cell performance.

Chen, YC, Hsu YK, Lin YG, Chen LC, Chen KH.  2012.  Spontaneous synthesis and electrochemical characterization of nanostructured MnO2 on nitrogen-incorporated carbon nanotubes. Int. J. of Electrochem..
Chen, RS, Wang SW, Lan ZH, Tsai JTH, Wu CT, Chen LC, Chen* KH, Huang YS, Chen CC.  2008.  On-chip fabrication of well aligned and contact barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity. Small. 4:925-929.
Chen, KH, Chao CH, Chuang TJ.  1996.  GaN Growth by Nitrogen ECR-CVD Method. MRS Symp. . :Vol.423,377.
Chen, LC, Lu TR, Bhusari DM, Wu JJ, Chen KH, Kuo CT, Chen TM.  1998.  The Use of a Bio-molecular Target for Crystalline Carbon Nitride Film Deposition by Ar Ion-Beam Sputtering without Other Source of Nitrogen. Appl. Phys. Lett.. 72:3449.
Chen, KH, Lai YL, Chen LC, Wu JY, Kao FJ.  1995.  High-temperature Raman Study in CVD Diamond. Thin Solid Films. 270:143.
Chen, WC, Tunuguntla V, Li HW, Chen CY, Li SS, Hwang JS, Lee CH, Chen LC, Chen KH.  2016.  Fabrication of Cu2ZnSnSe4 solar cells through multi-step selenization of layered metallic precursor film. Thin Solid Films .
Chen, KH, Lai YL, Lin JC, Song KJ, Chen LC, Huang CY.  1995.  Micro-Raman for Diamond Film Stress Analysis. Diamond and Related Materials. 4:460.
Chen, HM, Chen CK, Chang YC, Tsai CW, Liu RS, Hu SF, Chang WS, Chen KH.  2010.  Monolayer-quantum dots sensitized ZnO nanowires-array photoelectrodes: true efficiency for water splitting. Angew. Chem. Int. Ed.. 49:5966-5969.
Chen, HM, Chen CK, Liu RS, Wu CC, Chang WS, Chen KH, Chan TS, Lee JF, Tsai DP.  2011.  A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode. Advanced Energy Materials. 1:742-747.
Chen, KJ, Hong WK, Lin JB, Chen LC, Chen KH, Cheng* HC.  2001.  Low turn-on voltage field emission triodes with selective growth of carbon nanotubes. IEEE Electron Device Lett.. 22:516-518.
Chen, RS, Wang WC, Chan CH, Lu ML, Chen YF, Lin HC, Chen KH, Chen LC.  2013.  Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires. Nanoscale. 5:6867-6873.
Chen, RS, Huang* YS, Tsai DS, Chattopadhyay S, Wu CT, Lan ZH, Chen KH.  2004.  Growth of well aligned IrO2 nanotubes on LiTaO3 (012) substrates. Chem. Mater.. 16:2457-2462.
Chen, CW, Huang CC, Lin YY, Chen LC, Chen KH.  2005.  Affinity of Si-N and Si-C bond in the SiCN thin films - experimental and theoretical approaches. Diamond Relat. Mater.. 14:1126-1130.
Chen, KH, Wen CY, Wu CT, Chen LC, Wang CT, Ma KJ.  2001.  Electron beam induced formation of carbon nanorods. J. Phys. Chem. of Solids. 62:1561-1565.
Chen, LC, Bhusari DM, Yang CY, Chen KH, Chuang TJ, Lin MC, Chen CK, Huang YF.  1997.  Si-Containing Crystalline Carbon Nitride Derived by Microwave Plasma-Enhanced Chemical Vapor Deposition. Thin Solid Film. 303:66-75.
Chen, HY, Chen RS, Chang FC, Chen* LC, Chen KH, Yang YJ.  2009.  Size-dependent photoconductivity and dark conductivity of m-axial GaN nanowires with small critical diameter. Appl. Phys. Lett.. 95:143123.
Chen, LC, Chen KH, Wei SL, Kichambare PD, Wu JJ, Lu TR, Kuo CT.  1999.  Crystalline SiCN: ahard material rivals to cubic BN. Thin Solid Films. 355:112-116.
Chen, CW, Chen* KH, Shen CH, Wu JJ, Pong WF, Ganguly A, Chen LC.  2006.  Anomalous energy shift of emission spectra of ZnO nanorods with sizes beyond quantum confinement regime. Appl. Phys. Lett.. 88:241905-(1-3).