Publications

Export 456 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Fang, WC, Huang JH, Sun CL, Chen* LC, Papakonstantinou P, Chyan OM, Chen KH.  2006.  Superior electrochemical performance of CNxNTs using TiSi2buffer layer on Si substrates. J. Vac. Sci. Tech.. B24:87-90.
Syum, Z, Venugopal B, Sabbah A, Billo T, Chou T-chin, Wu H-L, Chen L-C, Chen K-H.  2021.  Superior lithium-ion storage performance of hierarchical tin disulfide and carbon nanotube-carbon cloth composites, 2021. Journal of Power Sources. 482:228923. AbstractWebsite

Tin-based composites are promising anode materials for high-performance lithium-ion batteries (LIBs); however, insufficient conductivity, as well as fatal volume expansion during cycling lead to poor electrochemical reversibility and cycling stability. In this work, we demonstrate the lithium-ion storage behaviors of SnS2 anode material deposited on different electrode supports. The SnS2 grown on 3D hierarchical carbon nanotube-carbon cloth composites (SnS2-CNT-CC) shows superior capacity retention and cycle stability, compared to that on planar Mo sheets and carbon cloth. The specific capacity of SnS2 on Mo, CC, and CNT-CC is around 240, 840, and 1250 g−1, respectively. The SnS2-CNT-CC electrode outperforms in the cyclic performance and rate capability compared to other electrode configurations due to the multi-electron pathway and high surface area derived from 3D hierarchical CNT-CC electrode support. Furthermore, a significant decrease in the charge transfer resistance is observed by utilizing 3D hierarchical CNT-CC electrode support. The use of 3D hierarchical structures as electrode support could be the best alternative to enhance the electrochemical performances for the next generation LIBs.

Lin, CH, Tseng SC, Liu YK, Tai Y, Chattopadhyay S, Lin CF, Lee JH, Hwang JS, Chen* LC, Chen WC, Chen* KH.  2008.  Suppressing series resistance in organic solar cells by oxygen plasma treatment. Appl. Phys. Lett.. 92:233302.
Wei, PC, Chen KH, Chen LC.  2014.  Surface diffusion controlled formation of high quality vertically aligned InN nanotubes. J. Appl. Phys.. 116:124301.
Chattopadhyay*, S, Lo HC, Hsu CH, Chen LC, Chen KH.  2005.  Surface enhanced Raman spectroscopy using self assembled silver nanoparticulates on silicon nanotips. Chem. Mater.. 17:553-559.
Sahoo, S, Hu MS, Hsu CW, Chen LC, Chen KH, Arora AK, Dhara S.  2008.  Surface optical Raman modes in InN nanostructures. Appl. Phys. Lett.. 93:233116-(1-3).
Wang, SB, Huang YF, Chattopadhyay S, Chang SJ, Chen RS, Chong CW, Hu MS, Chen LC, Chen KH.  2013.  Surface plasmon-enhanced gas sensing in single gold peapodded-silica nanowire. Asia Materials.
Huang, BR, Chen KH, Ke WZ.  2000.  Surface-enhanced Raman analysis of the diamond films by using different metals. Materials Letters. 42:162-165.
Samireddi, S, Aishwarya V, Shown I, Muthusamy S, Unni SM, Wong K-T, Chen K-H, Chen L-C.  2021.  Synergistic Dual-Atom Molecular Catalyst Derived from Low-Temperature Pyrolyzed Heterobimetallic Macrocycle-N4 Corrole Complex for Oxygen Reduction. Small. 17:2103823., Number 46 AbstractWebsite

Abstract A heterobimetallic corrole complex, comprising oxygen reduction reaction (ORR) active non-precious metals Co and Fe with a corrole-N4 center (PhFCC), is successfully synthesized and used to prepare a dual-atom molecular catalyst (DAMC) through subsequent low-temperature pyrolysis. This low-temperature pyrolyzed electrocatalyst exhibited impressive ORR performance, with onset potentials of 0.86 and 0.94 V, and half-wave potentials of 0.75 and 0.85 V, under acidic and basic conditions, respectively. During potential cycling, this DAMC displayed half-wave potential losses of only 25 and 5 mV under acidic and alkaline conditions after 3000 cycles, respectively, demonstrating its excellent stability. Single-cell Nafion-based proton exchange membrane fuel cell performance using this DAMC as the cathode catalyst showed a maximum power density of 225 mW cm−2, almost close to that of most metal–N4 macrocycle-based catalysts. The present study showed that preservation of the defined CoN4 structure along with the cocatalytic Fe–Cx site synergistically acted as a dual ORR active center to boost overall ORR performance. The development of DAMC from a heterobimetallic CoN4-macrocyclic system using low-temperature pyrolysis is also advantageous for practical applications.

Krishnamoorthy, V, Sabhapathy P, Raghunath P, Huang C-Y, Sabbah A, Kamal Hussien M, Syum Z, Muthusamy S, Lin M-C, Wu H-L, Chen R-S, Chen K-H, Chen L-C.  2024.  Synergistic Electronic Interaction of Nitrogen Coordinated Fe-Sn Double-Atom Sites: An Efficient Electrocatalyst for Oxygen Reduction Reaction, 2024. Small Methods. n/a(n/a):2301674.: John Wiley & Sons, Ltd AbstractWebsite

Abstract Double-atom site catalysts (DASs) have emerged as a recent trend in the oxygen reduction reaction (ORR), thereby modifying the intermediate adsorption energies and increasing the activity. However, the lack of an efficient dual atom site to improve activity and durability has limited these catalysts from widespread application. Herein, the nitrogen-coordinated iron and tin-based DASs (Fe-Sn-N/C) catalyst are synthesized for ORR. This catalyst has a high activity with ORR half-wave potentials (E1/2) of 0.92 V in alkaline, which is higher than those of the state-of-the-art Pt/C (E1/2 = 0.83 V), Fe-N/C (E1/2 = 0.83 V), and Sn-N/C (E1/2 = 0.77 V). Scanning electron transmission microscopy analysis confirmed the atomically distributed Fe and Sn sites on the N-doped carbon network. X-ray absorption spectroscopy analysis revealed the charge transfer between Fe and Sn. Both experimental and theoretical results indicate that the Sn with Fe-NC (Fe-Sn-N/C) induces charge redistribution, weakening the binding strength of oxygenated intermediates and leading to improved ORR activity. This study provides the synergistic effects of DASs catalysts and addresses the impacts of P-block elements on d-block transition metals in ORR.

Bayikadi, KS, Wu CT, Chen L-C, Chen K-H, Chou F-C, Sankar R.  2020.  Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries, 2020. Journal of Materials Chemistry A. 8(10):5332-5341.: The Royal Society of Chemistry AbstractWebsite

In addition to the Ge-vacancy control of GeTe, the antimony (Sb) substitution of GeTe for the improvement of thermoelectric performance is explored for Ge1−xSbxTe with x = 0.08–0.12. The concomitant carrier concentration (n) and the aliovalent Sb ion substitution led to an optimal doping level of x = 0.10 to show ZT ∼ 2.35 near ∼800 K, which is significantly higher than those single- and multi-element substitution studies of the GeTe system reported in the literature. In addition, Ge0.9Sb0.1Te demonstrates an impressively high power factor of ∼36 μW cm−1 K−2 and a low thermal conductivity of ∼1.1 W m−1 K−1 at 800 K. The enhanced ZT level for Ge0.9Sb0.1Te is explained through a systematic investigation of micro-structural change and strain analysis from room temperature to 800 K. A significant reduction of lattice thermal conductivity (κlat) is identified and explained by the Sb substitution-introduced strained and widened domain boundaries for the herringbone domain structure of Ge0.9Sb0.1Te. The Sb substitution created multiple forms of strain near the defect centre, the herringbone domain structure, and widened tensile/compressive domain boundaries to support phonon scattering that covers a wide frequency range of the phonon spectrum to reduce lattice thermal conductivity effectively.

Chiu, J-M, Chou T-chin, Wong DP, Lin Y-R, Shen C-A, Hy S, Hwang B-J, Tai Y, Wu H-L, Chen L-C, Chen K-H.  2018.  A synergistic “cascade” effect in copper zinc tin sulfide nanowalls for highly stable and efficient lithium ion storage. Nano Energy. 44:438-446. AbstractWebsite
n/a
Wu, JT, Fang TH, Hsu CF, Yu YY, Wang GJ, Tang CW, Chen KH, Lii KH.  1998.  Synthesis and Characterization of an Organic-inorganic Hybrid Compound: [WO3(2,2’-bipyridine)]. J. Matter. Chem.. 8:2181.
Yang, M-J, Yusuf Fakhri M, Liao C-N, Chen K-H.  2022.  Synthesis and characterization of Ge-Ag-Sb-S-Se-Te high-entropy thermoelectric alloys, 2022. 311:131617. AbstractWebsite

Multielement alloying is an appealing approach for suppressing thermal conductivity of thermoelectric materials. In this study, we synthesized GeTe-based high-entropy alloys with notable (S, Se) substitution at Te sites and (Ag, Sb) at Ge sites. The Ge0.82Ag0.08Sb0.1S0.5Se0.1Te0.4 exhibits an extremely low thermal conductivity of ∼ 0.66 W/m⋅K and a high Seebeck coefficient (>250 μV/K) over a temperature range of 150 – 400 °C. The influence of lattice distortion on phase transformation and transport properties of Ge0.9-2xAg2xSb0.1S0.5Se0.1Te0.4 (x = 0 – 0.06) was investigated.

Lee, S-W, Chen J-C, Wu J-A, Chen K-H.  2017.  Synthesis and Properties of Poly(ether sulfone)s with Clustered Sulfonic Groups for PEMFC Applications under Various Relative Humidity. ACS Appl. Mater. Interfaces. 9(11):9805–9814.
Lee, S-W, Chen J-C, Wu J-A, Chen K-H.  2017.  Synthesis and Properties of Poly(ether sulfone)s with Clustered Sulfonic Groups for PEMFC Applications under Various Relative Humidity, 2017. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces. 9(11):9805-9814.: American Chemical Society AbstractWebsite
n/a
T
Chen, KH, Chuang MC, Penney M, Banholzer WF.  1992.  Temperature and Density Distribution of H2 and H in Hot Filament CVD of Diamond Films. J. Appl. Phys.. 71:1485.
Lin, DY, Li CF, Huang YS, Jong YC, Chen YF, Chen LC, Chen CK, Chen KH, Bhusari DM.  1997.  Temperature dependence of direct band gap of Si-containing carbon nitride crystalline films. Phys. Rev. B. 56:6498-6501.
Sun, CL, Hsu YK, Lin YG, Chen KH, Bock C, MacDougall B, Wu X, Chen LC.  2009.  Ternary PtRuNi nanocatalysts supported on N-doped carbon nanotubes: deposition process, materials characterization, and electrochemistry. J. Electrochem. Soc.. 156:B1249-B1252.
Chattopadhyay, S, Chen* LC, Wu CT, Chen KH, Wu JS, Chen YF, Lehmann G, Hess P.  2001.  Thermal diffusivity in amorphous silicon carbon nitride thin films by the traveling wave technique. Appl. Phys. Lett.. 79:332-334.
Chattopadhyay*, S, Chien SC, Chen LC, Chen KH, Lehmann G, Hess P.  2002.  Thermal diffusivity in diamond, SiCxNy and BCxNy. Diamond Relat. Mater. 11:708-713.
Wei, PC, Shih HC, Hsu CM, Lin FS, Chen KH, Chattopadhyay* S, Ganguly A, Hsu CW, Chen LC.  2008.  Thermal diffusivity study in supported epitaxial InN thin films by the Traveling-Wave technique. J. Appl. Phys.. 104:064920.
Su, T-Y, Wang T-H, Wong DP, Wang Y-C, Huang A, Sheng Y-C, Tang S-Y, Chou T-chin, Chou T-L, Jeng H-T, Chen L-C, Chen K-H, Chueh Y-L.  2021.  Thermally Strain-Induced Band Gap Opening on Platinum Diselenide-Layered Films: A Promising Two-Dimensional Material with Excellent Thermoelectric Performance, 2021. Chemistry of MaterialsChemistry of Materials. 33(10):3490-3498.: American Chemical Society AbstractWebsite
n/a
M.C. Kan, Huang* JL, Sung JC, Chen KH, Yau BS.  2003.  Thermionic emission of amorphous diamond and field emission of carbon nanotube. Carbon. 41:2839-2845.
Prem Kumar, DS, Tippireddy S, Ramakrishnan A, Chen K-H, Malar P, Mallik RC.  2019.  Thermoelectric and electronic properties of chromium substituted tetrahedrite, 2019. Semiconductor Science and Technology. 34(3):035017.: IOP Publishing AbstractWebsite

Cr substituted tetrahedrites with the chemical formula Cu12−xCrxSb4S13 (x = 0.15, 0.25, 0.35, 0.5, 0.75, 1.0) have been synthesised for thermoelectric study. Cr substitutes at the Cu site to optimize the thermoelectric properties and achieve a higher figure of merit (zT). X-Ray diffraction (XRD) analysis revealed that the tetrahedrite is the major phase with minor impurity phases. Electron probe microanalysis (EPMA) shows the formation of tetrahedrite main phase with near stoichiometry and the presence of Cu3SbS4, CuSbS2 and Sb as secondary phases. X-ray photoelectron spectroscopy (XPS) shows the oxidation state of Cu, Sb and S as +1, +3 and −2, respectively, whereas for Cr, it could not be identified. Temperature-dependent magnetic susceptibility of sample x = 0.75 shows antiferromagnetic correlation originating from the Cr ion. The calculated effective magnetic moment of 2.83 μB per Cr atom indicates the presence of Cr+4 in this sample. The decrease in the electrical resistivity upon doping indicates the compensation of holes due to the substitution of Cr at the Cu site. But the x = 0.35 sample is not following the trend due to larger compensation of holes with an activation energy of 124.6 meV. The temperature-dependent behaviour of electrical resistivity shows the shift in the Fermi level from the valance band towards the band gap. The absolute Seebeck coefficient is positive throughout the temperature range and follows a similar trend as that of electrical resistivity, with the exception of the x = 0.35 sample. The electronic thermal conductivity reduces due to hole compensation caused by Cr substitution. Moreover, the substitution of Cr effectively reduces the lattice thermal conductivity due to point defect scattering of phonons. A maximum zT of 1.0 is achieved for sample x = 0.35 at 700 K.