Publications

Export 31 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Qorbani, M, Chou T-chin, Lee Y-H, Samireddi S, Naseri N, Ganguly A, Esfandiar A, Wang C-H, Chen L-C, Chen K-H, Moshfegh AZ.  2017.  Multi-porous Co3O4 nanoflakes @ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors. Journal of Materials Chemistry A. 5:12569-12577.
E. N. Konyushenko, Stejskal* J, Trchova M, Hradi J, Kovarova J, Prokes J, Cieslar M, Hwang JY, Chen KH, Sapurina I.  2006.  Multi-wall carbon nanotubes coated with polyaniline. Polymer. 47:5715-5723.
Roy, PK, Haider G, Lin H-I, Liao Y-M, Lu C-H, Chen K-H, Chen L-C, Shih W-H, Liang C-T, Chen Y-F.  2018.  Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network, 2018. Advanced Optical MaterialsAdvanced Optical Materials. 6(16):1800382.: John Wiley & Sons, Ltd AbstractWebsite

Abstract Application of lasers is omnipresent in modern-day technology. However, preparation of a lasing device usually requires sophisticated design of the materials and is costly, which may limit the suitable choice of materials and the lasing wavelengths. Random lasers, on the other hand, can circumvent the aforementioned shortcomings with simpler fabrication process, lower processing cost, material flexibility for any lasing wavelengths with lower lasing threshold, providing a roadmap for the design of super-bright lighting, displays, Li-Fi, etc. In this work, ultralow-threshold random laser action from semiconductor nanoparticles assisted by a highly porous vertical-graphene-nanowalls (GNWs) network is demonstrated. The GNWs embedded by the nanomaterials produce a suitable cavity for trapping the optical photons with semiconductor nanomaterials acting as the gain medium. The observed laser action shows ultralow values of threshold energy density ≈10 nJ cm?2 due to the strong photon trapping within the GNWs. The threshold pump fluence can be further lowered to ≈1 nJ cm?2 by coating Ag/SiO2 upon the GNWs due to the combined effect of photon trapping and strong plasmonic enhancement. In view of the growing demand of functional materials and novel technologies, this work provides an important step toward realization of high-performance optoelectronic devices.

S. Dhara*, KH, Chandra S, Mangamma G, Kalavathi S, Shankar P, Nair KGM, Tyagi AK, Hsu CW, Kuo CC, Chen LC, Chen KH, Sriram KK.  2007.  Multiphonon Raman scattering in GaN nanowires. Appl. Phys. Lett.. 90:213104.
Chen, KH, Lu CZ, Avilas L, Mazur E, Bloembergen N, Shultz MJ.  1989.  Multiplex Coherent Anti-Stokes Raman Spectroscopy Study of Infrared-multiphoton-excited OCS. J. Chem. Phys.. 91:1462.
Bloembergen, N, Chen KH, Lu CZ, Mazur E.  1990.  Multiplex Pure Rotational Coherent Anti-Stokes Raman Spectroscopy in a Molecular Beam. J. Raman Spectroscopy. 21:819.