One-step synthesis of graphene hollow nanoballs with various nitrogen-doped states for electrocatalysis in dye-sensitized solar cells

Chi-Ang Tseng a,1, Chuan-Pei Lee b,1, Yi-June Huang c, Hao-Wei Pang c, Kuo-Chuan Ho c, d, **, Yit-Tsong Chen a, b, *

a Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
b Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan
c Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
d Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan

A R T I C L E I N F O

Article history:
Received 1 December 2017
Received in revised form 11 January 2018
Accepted 6 February 2018

Keywords:
Graphene hollow nanoball
Nitrogen doping
All-carbon electrode
Dye-sensitized solar cell

A B S T R A C T

Nitrogen-doped graphene hollow nanoballs (N-GHBs) were synthesized in chemical vapor deposition (CVD) reaction using melamine as a chemical precursor via an in situ nitrogen-doping approach. In the CVD reaction, N-GHBs were deposited directly on carbon cloth (CC) to be used as an efficient metal-free electrocatalyst for dye-sensitized solar cell (DSSC) applications. The highly curved N-GHBs could avoid the self-assembly restacking of planar graphene sheets, which usually occurred during the film preparation. Keeping oxygen contaminations from N-GHBs, the characteristic electrical conductivity of graphene was preserved in the as-synthesized N-GHBs. By controlling the evaporation temperature of melamine, the nitrogen-doping content of 8.7–14.0% and different nitrogen-doped configurations in N-GHBs could be adjusted. The catalytic activities of different nitrogen-doped states in N-GHBs toward the triiodide (I3−/I−) reduction in DSSCs were investigated, revealing that the pyridinic and quaternary nitrogens, rather than the total nitrogen doping level, in N-GHBs are mainly responsible for their catalytic activities in DSSCs. For solar cell applications, the high surface area and heteroatomic nitrogens of GHBs can remarkably improve the catalytic activity toward the triiodide reduction, lower the charge-transfer resistance, and enhance the corresponding photovoltaic performance (7.53%), which is comparable to that (7.70%) of a standard sputtered Pt counter electrode-based cell. These exceptional properties allow N-GHBs/CC to act as a promising electrocatalytic electrode for DSSC and other electrochemical energy applications.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Dye-sensitized solar cells (DSSCs) have drawn widespread attention in solar energy markets due to their high conversion efficiency, low cost, flexibility and light weight, and simple fabrication processes [1,2]. A DSSC comprises three main components of a dye-sensitized titania (TiO2) photoanode, the triiodide/iodide (I3−/I−) electrolyte, and a platinum (Pt)/fluorine-doped tin oxide (FTO) counter electrode (CE); in particular, CE plays a crucial role in the charge balance of electrolytes. The Pt and FTO used for the CE of traditional DSSCs are attributed to their excellent catalytic activity and high electrical conductivity, respectively. However, the scarcity and poor iodide corrosion-resistance of Pt together with the rigidity and heavy weight of FTO have restricted their commercial applications [3–5]. Therefore, searching for alternative candidates, such as carbon-based materials, transition-metal compounds, and conducting polymers, has been extensively proceeded. Among them, carbon-based materials, including graphene, activated carbons, carbon blacks, and carbon nanotubes, are very promising substituents because of their low cost, good catalytic ability, high conductivity, and high chemical stability in corrosive electrolytes [6,7].

Graphene, a two-dimensional (2D) atomically thick carbon material, has been highlighted for its high conductivity, good transparency, and large specific surface area [8–10]. However,
pristine graphene shows poor catalytic ability toward the triiodide (I3−) reduction in DSSC, because the active sites exist only at the edges of graphene. To address this issue, the insertion of heteroatoms into the basal plane of graphene and the structural engineering of graphene to three-dimensional (3D) shape/morphology are efficient routes for increasing active sites and catalytic ability. Several reports have shown great promises for the triiodide reduction via the chemical doping of graphene with heteroatoms, such as nitrogen [11–13], sulfur [14,15], oxygen [16], and phosphorous [17]. Among these dopants, the introduction of nitrogen into graphene not only creates an electron-donating area to enhance the iodine adsorption [18], but also increases the conjugation between the lone-pair electrons of nitrogen and the delocalized π-system of graphene, resulting in an enhancement of the electrocatalytic reactivity in DSSCs.

In addition, an increase of the catalytic activity of CEs can also be achieved by the structural transformation of graphene, such as N-doped nanoplatelets [19], N-doped graphene foams [20], and N-doped graphene/carbon nanotube 3D structures [21]. It is well known that both high surface area and good electrical conductivity are prerequisite for a promising CE material. However, most of the N-doped graphenes were derived from reduced graphene oxides (rGO), which suffered from their inclination to restacking in the structural formation and low conductivity in the electrical performance [22], leading to a decrease of the accessible active sites and an increase of the total internal resistance in DSSC. Moreover, a quantity of residual oxygen-containing functional groups could still remain in the nitrogen-doped rGO samples during the nitrogen-doping process due to the difficulty of completely eliminating oxygen-containing groups by thermal annealing. These residual oxygen-containing groups in nitrogen-doped rGO could also contribute to catalytic activity for the triiodide reduction, making it difficult to evaluate the role of N-doped species toward the triiodide reduction reaction. Recent reports showed that several nitrogen-doped states, e.g., pyridinic N, pyrrolic N, quaternary N, and pyridinic N-oxide, always coexist in nitrogen-doped graphene and not all of these nitrogen-doped configurations contribute to catalytic activity [23]. Therefore, the investigation of individual N-doped states toward catalytic activities is highly demanded to maximize the performance of a nitrogen-doped graphene CE in DSSCs.

Here, we developed a one-step chemical vapor deposition (CVD, Fig. 1a) method to synthesize nitrogen-doped graphene hollow nanoballs (N-GHBs) directly on carbon cloth (referred to as N-GHBs/CC) for the uses of an all-carbon CE in DSSCs. In this one-step CVD synthesis, the melamine molecule (i.e., 1,3,5-triazine-2,4,6-triamine with its chemical structure shown in Fig. 1a) was selected as a chemical precursor for the carbon and nitrogen sources in high-temperature CVD reaction, where the versatile fragments containing C–N and C=N groups from the decomposed melamine could rearrange to facilitate the N-doped graphene formation. The curved structure of the as-synthesized N-GHBs has the advantages of preventing the restacking of graphene layers that usually occurred during the film preparation, maximizing the surface area to enhance charge transfers, and maintaining the electrical conductivity for high electrochemical performance. Furthermore, by analyzing different N-doped configurations and their contents in the N-GHB samples, we realized that the pyridinic N and quaternary N states (as illustrated in Fig. 1b) act as active sites to enhance the triiodide reduction and play a significant electrocatalytic role in DSSCs. As a result, a DSSC device with the N-GHBs/CC-fabricated CE exhibited a high power conversion efficiency (PCE) of 7.53%, which is comparable to 7.70% of a sputtered Pt/CC CE-based cell.

2. Results and discussion

The CVD apparatus used for the growth of N-GHBs on CC is illustrated in Fig. 1a with the experimental procedures described in the Supporting Information. In N-GHBs, the heteroatomic N could have three bonding configurations within the carbon lattice (Fig. 1b), including pyridinic N, quaternary N, and pyrrolic N. While a pyridine N (pyrrolic N) has a substitutional N atom bonding to two C atoms in the six-membered (five-membered) N-containing aromatic rings, a quaternary N replaces a C atom in the carbon framework, which bonds to three neighboring C atoms and is located at the basal plane of a graphene layer.

In the CVD synthesis of N-GHBs, we found that the ratios of pyridinic N, quaternary N, and pyrrolic N in the as-produced N-GHB samples could be controlled by varying the evaporation temperature of melamine, which was achieved by placing the melamine precursor at different locations to the furnace. As illustrated in

![Fig. 1](image-url)
In a DSSC, the photo-excited electrons in the dye molecules inject into the conducting band of a TiO₂ photoanode; meanwhile, while the oxidized dye can be reduced back by the I⁻ ions in electrolyte, the resultant I₃⁻ ions are reduced at the CE (I₃⁻ + 2e⁻ → 3I⁻). As a consequence, the reduction reaction of I₃⁻ at CE plays an important role to maintain the steady power output of a DSSC [34]. To investigate the electrocatalytic activities and reaction kinetics of the as-prepared N-GHBs/CC electrodes for the I⁻/I₃⁻ redox reaction, the cyclic voltammogram was performed (Fig. 3), in which the higher cathodic peak current density (JPC) represents the better apparent electrocatalytic activity for the I₃⁻ reduction and the peak separation (ΔEp; i.e., the potential difference between the oxidation and reduction peaks) varies inversely with the intrinsic heterogeneous charge-transfer rate constant (κ') [24,35,36].

Fig. 3 shows the cyclic voltammograms and corresponding electrochemical parameters of different N-GHBs/CC electrodes. The N-GHBs-P4/CC electrode with the lowest N/C ratio (8.70%, in Fig. 1d) exhibits the smallest JPC (−1.36 mA cm⁻²) and the largest ΔEp (660 mV) among the N-GHBs/CC electrodes tested. For N-GHBs-P3/CC, as the N/C ratio increased to 12.1% (Fig. 1d), the JPC was enhanced to −1.68 mA cm⁻² but the ΔEp was reduced significantly to 550 mV. However, with a further increase of the N/C ratio to 14.0% (i.e., N-GHBs-P2/CC), the JPC decreased (to −1.55 mA cm⁻²) but the ΔEp increased slightly (to about 570 mV). This outcome implies that the catalytic ability of N-GHBs could not be improved by simply increasing the N/C ratio. Interestingly, with different N-doped states in the N-GHB samples analyzed in Fig. 1d, we found that the total contents of pyridinic N and quaternary N have a high positive correlation with the catalytic ability of N-GHBs. Accordingly, the N-GHBs-P3/CC electrode, which has the highest amounts of pyridinic N and quaternary N, relative to the other two electrodes tested, possesses the largest JPC and smallest ΔEp. This result is well consistent with the recent reports [24,30,37] that some special N-functionalized groups, like pyridinic N and quaternary N, on the graphene plane play the most important roles for catalytic reaction, in sharp contrast to other groups with negligible contributions, such as pyrrolic N and pyridinic N-oxide rings. Consequently, the best N-GHBs/CC electrode, i.e., N-GHBs-P3/CC, was selectively used as an all-carbon CE for further investigation of the photovoltaic performance in DSSCs.

Fig. 4a shows the photocurrent density vs. voltage (J–V) curves of the DSSCs using various CEs of bare CC, GHBs/CC, N-GHBs-P3/CC, and sputtered Pt/CC, respectively, and their corresponding photovoltaic parameters are summarized in Table 1. The DSSC with bare CC shows a poor overall light-to-electricity conversion efficiency (η) of 0.48 ± 0.11%. After the decoration of GHBs on CC (i.e., GHBs/CC), the η was greatly enhanced to 6.20 ± 0.06%. This enhancement stems from the fact that the strain-induced structural defects on the highly curved GHBs could beneficially act as active sites for the electrocatalytic reaction at CE [38]; meanwhile, the hollow structure of GHBs provided bifacial electrocatalytic surfaces to facilitate the charge transfer from CE to electrolytic I₃⁻. By using an N-GHBs-P3/CC CE, the η of the corresponding DSSC could be further improved to 7.53 ± 0.06%, comparable to 7.70 ± 0.14% of the sputtered Pt/CC CE-based cell. Obviously, by incorporating heteroatomic N, the performance of GHBs has been enhanced significantly by a 21% increase in the cell efficiency. Besides, different efficiency of a DSSC, by using a CE of GHBs/CC or N-GHBs-P3/CC, is caused mainly by the variations of the short-circuit photocurrent density (JSC) and fill factor (FF) of the cell. With the same photoanode and electrolyte in a DSSC, a high JSC is ascribed to the good electrocatalytic ability of CE for quickly reducing the I₃⁻ ions, which in turn can lead to the fast charge-transfer kinetics in the cell and result in a high FF. These mechanisms will be further discussed and verified later through
Fig. 2. The SEM images of (a) GHBs/CC and (b) N-GHBs/CC. The elemental mappings of (c) C and (d) N at their K atomic orbitals in N-GHBs/CC. (e) A TEM image of N-GHBs with hollow spherical structure. (f) HRTEM image of N-GHBs with ~3.5 nm-thick graphitic layers. The electron microscopy images and elemental mappings of N-GHBs were all taken from the N-GHBs-P3 sample.

Fig. 3. The cyclic voltammograms and electrochemical parameters of different N-GHBs/CC electrodes and sputtered Pt/CC were measured to investigate the electrochemical parameters of various N-doped states.
voltammograms, and (d) electrochemical impedance spectra (EIS, under AM 1.5G illumination at 100 mW cm⁻²) of various CEs (including bare CC, GHBs/CC, N-GHBs-P3/CC, and sputtered Pt/CC)-based DSSCs were investigated.

Fig. 4. The (a) photocurrent density–voltage (J–V, under AM 1.5G illumination at 100 mW cm⁻²) curves, (b) incident photon-to-electron conversion efficiency (η) curves, (c) cyclic voltammograms, and (d) electrochemical impedance spectra (EIS, under AM 1.5G illumination at 100 mW cm⁻²) of various CEs (including bare CC, GHBs/CC, N-GHBs-P3/CC, and sputtered Pt/CC)-based DSSCs were investigated.

Table 1
Photovoltaic parameters of the DSSCs with various counter electrodes were measured under AM 1.5G (100 mW cm⁻²) illumination.

<table>
<thead>
<tr>
<th>Counter electrodes</th>
<th>η (%)</th>
<th>V_OC (mV)</th>
<th>J_SC (mA cm⁻²)</th>
<th>FF</th>
<th>J_mec (mA cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare CC</td>
<td>0.48 ± 0.11</td>
<td>571 ± 2</td>
<td>4.33 ± 0.83</td>
<td>0.19 ± 0.01</td>
<td>4.14</td>
</tr>
<tr>
<td>GHBs/CC</td>
<td>6.20 ± 0.06</td>
<td>697 ± 5</td>
<td>14.50 ± 0.27</td>
<td>0.61 ± 0.01</td>
<td>14.29</td>
</tr>
<tr>
<td>N-GHBs-P3/CC</td>
<td>7.53 ± 0.06</td>
<td>703 ± 5</td>
<td>16.09 ± 0.18</td>
<td>0.67 ± 0.01</td>
<td>15.99</td>
</tr>
<tr>
<td>Sputtered Pt/CC</td>
<td>7.70 ± 0.14</td>
<td>735 ± 13</td>
<td>15.87 ± 0.32</td>
<td>0.66 ± 0.01</td>
<td>15.77</td>
</tr>
</tbody>
</table>

Note: The standard deviation for each measured value is based on three DSSCs. The J_mec values were calculated from the IPCE spectra with AM 1.5G solar spectrum.

due to the highest η. Despite a lower k该公司 to the larger ΔE_p of N-GHBs-P3/CC shows a higher J_SC than the sputtered Pt/CC because of the larger surface area of N-GHBs-P3 [24,35,36]. Therefore, as listed in Table 1, a DSSC with the N-GHBs-P3/CC CE exhibits a comparable J_SC, FF, and J_mec to that of the sputtered Pt/CC CE-based cell.

Finally, EIS was employed to study the charge-transfer resistances in DSSCs. As shown in Fig. 4d, the EIS spectra of the DSSCs with bare CC, GHBs/CC, N-GHBs-P3/CC, and sputtered Pt/CC CEs were measured under AM 1.5G (100 mW cm⁻²) illumination. An equivalent circuit depicted in the upper inset is adopted to estimate the resistance of each interface in a DSSC. Basically, the EIS spectrum of a DSSC shows three semicircles in the frequency range of 10 mHz–100 kHz. While the first and second semicircles correspond to the charge-transfer resistance at the CE/electrolyte (Rct1) and the TiO2/dye/electrolyte interface (Rct2), respectively, the third corresponds to the Warburg diffusion resistance (ZW) of the I3⁻/I₃ ions in electrolyte. ZW virtually overlaps with Rct2 due to the short length for the diffusion of the I3⁻/I₃ ions available with the thin spacer used (i.e., 60 μm-thick Surlon® film), in addition, owing to the low viscosities of the solvents used in our electrolytes (e.g., 0.37 and 160 cp for acetonitrile and 3-methoxypropionitrile, respectively) [39–41]. The values of Rct2 (listed in Table S2 of the Supporting Information) was calculated by the EIS software for each interface of the DSSC.
Supporting Information] are 70.65, 23.42, 10.73, and 7.57 Ω for the DSSCs with bare CC, GHBs/CC, N-GHBs-P3/CC, and sputtered Pt/CC CEs, respectively. For a DSSC, with a lower content (12.1%) has significantly enhanced the catalytic activity toward the reaction. The photovoltaic performance of 7.35% achieved by the N-GHBs-P3/CC CE is comparable to 7.05% of a standard sputtered Pt CE, which is attributed to an increase of the specific surface area and a decrease of the charge-transfer resistance. Moreover, the as-synthesized N-GHBs with different N-doped states could be controlled simply by adjusting the evaporation rate of the melamine precursor. The contents of pyridinic N and quaternary N in N-GHBs/CC CEs have been demonstrated to play an essential role in the catalytic activity in DSSCs. With a better understanding of the N-doped states in graphene, a guideline can be developed for designing highly efficient carbon-based electrocatalysts for economical DSSCs.

3. Conclusions

We developed a one-step CVD method to synthesize all-carbon N-GHBs/CC CEs as an alternative to Pt used in DSSCs. The CVD-synthesized 3D spherical structure of GHBs with a high N-doping content (12.1%) has significantly enhanced the catalytic activity toward the reaction I (i.e., I3− + 6e− + 3H2O → 6OH−) can work more efficiently at CE, followed by the better regeneration of the oxidized dye. Therefore as shown in Table S2, the RCE, which is related to the charge-transfer resistance at the TiO2/dye/electrolyte interface, follows an order of sputtered Pt/CC (18.53 Ω) < N-GHBs-P3/CC (21.23 Ω) < GHBs/CC (31.98 Ω) < bare CC (127.8 Ω). After examining these RCE values, we confirmed that the lower charge-transfer resistances are responsible for the greater performance of DSSCs.

Conflict of interest

The authors declare no competing financial interests.

Acknowledgment

This work was supported, in part, by the Ministry of Science and Technology (MOST) of Taiwan under Grant Nos. 106-2627-M-002-035 and 106-2113-M-002-022-MY3. We thank the assistance from Mr. Ya-Yun Yang for HR-TEM operations.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.mtener.2018.02.006.

References

Supporting Information

One-step synthesis of graphene hollow nanoballs with various nitrogen-doped states for electrocatalysis in dye-sensitized solar cells

Chi-Ang Tseng, a,† Chuan-Pei Lee, b,† Yi-June Huang, c Hao-Wei Pang, c and Kuo-Chuan Ho, c,d,* and Yit-Tsong Chen, a,b,*

a Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan

b Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan

c Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan.

d Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan

*Address correspondence to: kcho@ntu.edu.tw, ytcchem@ntu.edu.tw

† These authors contributed equally.
Materials

Lithium iodide (LiI, synthetical grade) and iodine (I₂, synthetical grade) were obtained from Merck. Acetone (99+%), Tert-butyl alcohol (tBA, 96%), guanidine thiocyanate (GuSCN, 99+%), and 4-tert-butylpyridine (TBP, 96%) were purchased from Acros. Ti (IV) tetraisopropoxide (TTIP, >98%), lithium perchlorate (LiClO₄, ≥98.0%), ethanol (EtOH, absolute), isopropyl alcohol (IPA, 99.5%), sulfuric acid (H₂SO₄, 95–97%), and 2-methoxyethanol (99.95%) were received from Sigma-Aldrich. Acetonitrile (ACN, 99.99%) was obtained from J. T. Baker. 1,2-dimethyl-3-propylimidazolium iodide (DMPII) and cis-diisothiocyanato-bis (2,2’-bipyridyl-4,4’-dicarboxylato) ruthenium (II) bis(tetra-butylammonium) (N719 dye) were purchased from Solaronix (S.A., Aubonne, Switzerland). Carbon cloth (CC, W0S1002, thickness = 0.36 mm, basic weight = 120 g cm⁻², sheet resistance = 0.63 Ω sq.⁻¹) was obtained from CeTech Co., Ltd., Taiwan. Cu foils (25 µm in thickness, purity 99.8 %) were purchased from Alfa Aesar. The gases of methane (CH₄, 99.9995 %) and hydrogen (H₂, 99.9995 %) were purchased from FMI gas Co. Ltd., Taiwan.

Syntheses of N-GHBs and GHBs

The N-GHBs samples were synthesized in CVD reaction with the self-assisted catalytic growth of N-doped graphene shells on copper nanoparticles (CuNPs), in which the CuNP cores were later etched away by Marble’s reagent. An illustration of the CVD system is presented in Figure 1a of the main text. The CVD system contains a temperature-programmable furnace (40 cm in length) equipped with a quartz tube of 1 inch in diameter. One end of the reaction tube was a gas inlet and the other end was evacuated with a dry pump. CH₄ and H₂ were employed as a chemical precursor and a carrier gas (both with the flow rate of 200 sccm), respectively, in the synthetic reaction of nitrogen-doped graphene hollow nanoballs (N-GHBs). Another precursor
of melamine as a nitrogen source was placed at different locations away from the furnace edge near the gas inlet. A collector substrate of carbon cloth (CC) was put inside the quartz tube and located ~3 cm away from the furnace edge near the pump. Cu foils mounted on a tungsten boat were placed at the center of the furnace. The furnace was then heated to 1090 °C, which is higher than the melting point of Cu, resulting in the formation of CuNPs. During the synthetic reaction, the as-grown CuNPs could simultaneously catalyze the formation of graphene on their surfaces and serve as a template for the N-GHBs growth. Finally, the as-synthesized vapor-phase N-doped graphene-wrapped CuNPs were carried by the gas flow to deposit on the collector substrate for 2 hours.

The synthesis of GHBs was the same as the synthetic protocols described above, except without using melamine as a precursor.

Preparation of counter electrodes (CEs)

The CC substrates were cleaned by soaking into a H₂SO₄ solution for 1 week, and then washed sequentially with deionized water, EtOH, and IPA. The GHBs and N-GHBs were prepared separately on the cleaned CC substrates (i.e., GHBs/CC and N-GHBs/CC) for the uses of metal-free counter electrodes (CEs) in DSSCs. Meanwhile, a Pt catalytic layer was deposited on the cleaned CC substrate as a standard CE (denoted as a sputtered Pt/CC) with a direct current (DC) sputtering method.

Fabrication of DSSCs

A TiO₂ photoanode consists of a compact layer, a transparent layer, and a scattering layer on fluorine-doped SnO₂ (FTO, TEC-7, 10 Ω sq⁻¹, NSG America Inc., New Jersey, USA) conducting glass substrate. Before using the FTO, it was cleaned
with a neutral cleaner and then washed sequentially with deionized water, acetone, and IPA. Thereafter, a precursor solution containing TTIP and 2-methoxyethanol (weight ratio = 1:3) was used to obtain the compact layer (~100 nm thick) on the cleaned FTO substrate with a spin-coating method for obtaining a good mechanical contact between the conducting glass and the TiO₂ film. A transparent layer (~10 μm thick) was coated on the compact layer by a doctor blade technique with a commercial transparent TiO₂ paste (Ti-nanoxide HT/SP, average diameter of ~13 nm, Solaronix). A scattering layer (~4 μm thick) was then coated on the transparent layer with the same doctor blade technique by using a home-made scattering paste [S1]. Before the next TiO₂ coating, each layer was sintered at 500 °C for 30 min in an ambient environment. The as-prepared TiO₂ electrode was immersed in a 5×10⁻⁴ M N719 dye solution, containing a mixed solvent of ACN and tBA (volume ratio = 1:1), at room temperature for 24 h. Such a prepared dye-sensitized TiO₂ photoanode was coupled with a CE; these two electrodes were separated by a 60 μm-thick Surlyn® film (SX1170-60, Solaronix S.A., Aubonne, Switzerland). A mixture of 1.2 M DMPII, 0.35M I₂, 0.1 M GuSCN, and 0.5 M TBP in ACN/MPN (volume ratio of 8/2) was used as the electrolyte.

Measurements and instruments

The morphology of the as-prepared GHBs/CC and N-GHBs/CC were characterized by field-emission scanning electron microscopy (FESEM, JEOL JSM 7600) equipped with an energy dispersive X-ray spectrometer (EDS) for elemental composition analyses at 10 kV. High-resolution transmission electron microscopy (HRTEM) images were recorded with an FETEM (Philips Tecnai F30) operating at an accelerating voltage of 300 kV. An X-ray photoelectron spectrometer (XPS, VG Scientific ESCALAB 250) was employed for the chemical composition analysis.
avoid the signals overlapping between the as-synthesized samples and the CC substrate, XPS analysis was also carried out for the as-synthesized sample on silicon wafer (with a 300 nm-thick SiO2 dielectric layer).

The surface of a DSSC was covered by a mask with a light-illuminating area of 0.16 cm² and then illuminated by a class A quality solar simulator (XES-301S, AM 1.5G, San-Ei Electric Co., Ltd.) with the light intensity of 100 mW cm². Incident light intensity (100 mW cm²) was calibrated with a standard Si cell (PECSI01, Peccell Technologies, Inc., Yokohama, Japan). Photoelectrochemical characteristics of the DSSC were recorded with a potentiostat/galvanostat (PGSTAT 30, Autolab, Eco-Chemie, the Netherlands). Electrochemical impedance spectroscopy (EIS) analysis was performed using the above-mentioned potentiostat/galvanostat, equipped with an FRA2 module, under a constant light illumination of 100 mW cm². The frequency range explored was 10 mHz–100 kHz. The applied bias voltage was set at the open-circuit voltage of the DSSC, between the CE and the dye-sensitized TiO₂ photoanode, starting from the short-circuit condition; the corresponding alternative current (AC) amplitude was 10 mV. Impedance spectra data were analyzed by fitting them to an equivalent circuit model, using Z-view software [S2–S4]. The incident photo-to-electron conversion efficiency (IPCE) curves were obtained at the short-circuit condition. The light source was a class A quality solar simulator (PEC-L11, AM1.5G, Peccell Technologies, Inc.); light was focused through a monochromator (model 74100, Oriel Instrument, California, USA) onto the photovoltaic cell. The monochromator was incremented through the visible spectrum to generate the IPCE (λ) as defined below,

$$\text{IPCE} (\lambda) = 1240 \left(\frac{J_{SC}}{\lambda \phi} \right)$$

where λ is the wavelength, J_{SC} is the short-circuit photocurrent density (mA cm⁻²) recorded with a potentiostat/galvanostat, and φ is the incident radiative flux (W m⁻²).
measured with an optical detector (model 818-SL, Newport, California, USA) and power meter (model 1916-R, Newport, California, USA).

Cyclic voltammetry (CV) was performed to investigate the electrocatalytic abilities of CEs. The CV was carried out with a three-electrode electrochemical system, by using an electrode (e.g., one of bare CC, GHB/CC, NGHB/CC, and sputtered Pt/CC) as the working electrode, a Pt foil as the CE, and an Ag/Ag⁺ electrode as the reference electrode in an ACN solution, containing 10 mM I⁻, 1 mM I₂, and 0.1 M LiClO₄.
Deconvolution of the XPS spectra of N-GHBs-P2 and N-GHBs-P4

Figure S1. The deconvolution of high-resolution C1s and N1s XPS spectra for (a–b) N-GHBs-P2 and (c–d) N-GHBs-P4.
Calculation of crystallite size of graphene

Figure S2 shows the Raman spectrum of the N-GHBs-P3 sample, where the intensity ratio of the D to G bands (I_D/I_G) is inversely related to the crystallite size of graphene, which can be calculated from the Tuinstra-Koenig relationship:[S5]

$$L_a \text{ (nm)} = 2.4 \times 10^{-10} \times \lambda^4 \times (I_D/I_G)^{-1}$$

where L_a and λ are the crystallite size of graphene and the wavelength of an incident laser, respectively.

The I_D/I_G for N-GHBs-P3 was measured to be \sim1.3 and the corresponding crystallite size of graphene is \sim10 nm, suggesting that the N-GHBs are composed of finite crystallite size of graphene with plentiful edges.

![Raman spectrum of N-GHBs-P3](image.png)

Figure S2. Raman spectrum of N-GHBs-P3 was measured with an excitation at 488 nm. The crystallite size of graphene in N-GHBs-P3 was calculated to be \sim10 nm.
Electrochemical stability of sputtered Pt/CC and N-GHBs-P3/CC

To investigate the chemical stability of the electro-catalytic electrodes in the iodine/iodide electrolytes, the symmetrical dummy cells with two identical electrodes of sputtered Pt/CC and N-GHBs-P3/CC were fabricated for EIS aging measurements. In general, the EIS spectrum of a symmetrical dummy cell shows two semicircles in the measured frequency range. The first and second semicircles correspond to the charge-transfer processes occurring at the electro-catalytic electrode/electrolyte interface (R_{ct1}) and the Warburg diffusion process of the I^-/I_3^- ions in the electrolyte (R_{diff}), respectively. As shown in Figure S3, the device using N-GHBs-P3/CC electrodes survived in this test without apparent changes in its EIS spectrum; in contrast, the R_{ct1} of the device using Pt/CC electrodes increased obviously. This result significantly highlights the superior electrochemical stability of the N-GHBs-P3/CC electrode in the I^-/I_3^- electrolytes.

![Figure S3](image.png)

Figure S3. Electrochemical stability tests of the symmetrical dummy cells with two identical electrodes of (a) N-GHBs-P3/CC and (b) sputtered Pt/CC via EIS measurements, which were carried out consecutively at 0 V from 100 kHz to 10 mHz and repeated 20 times for each dummy cell containing the I^-/I_3^--based organic electrolytes.
Table S1. Electrochemical parameters for the cyclic voltammograms of various electrodes.

<table>
<thead>
<tr>
<th>Electrodes</th>
<th>J_{PC} (mA cm2)</th>
<th>ΔE_P (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare CC</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>GHBs/CC</td>
<td>-0.96</td>
<td>710</td>
</tr>
<tr>
<td>N-GHBs-P3/CC</td>
<td>-1.68</td>
<td>550</td>
</tr>
<tr>
<td>Sputtered Pt/CC</td>
<td>-1.58</td>
<td>530</td>
</tr>
</tbody>
</table>

Table S2. Electrochemical impedance spectroscopy data of the DSSCs with various counter electrodes under AM 1.5G (100 mW cm$^{-2}$) illumination.

<table>
<thead>
<tr>
<th>Counter electrodes</th>
<th>R_{ct1} (ohm)</th>
<th>R_{ct2} (ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare CC</td>
<td>70.65</td>
<td>1278</td>
</tr>
<tr>
<td>GHBs/CC</td>
<td>23.42</td>
<td>31.98</td>
</tr>
<tr>
<td>N-GHBs-P3/CC</td>
<td>10.73</td>
<td>21.23</td>
</tr>
<tr>
<td>Sputtered Pt/CC</td>
<td>7.57</td>
<td>18.53</td>
</tr>
</tbody>
</table>
References

