Publications

Export 14 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
U
Tsai, P-J, Chen Y-C.  2018.  Ultrabright, narrow-band photon-pair source for atomic quantum memories. Quantum Sci. Technol. 3 (034005)
T
Tsai, P-J, Wei Y-C, Wu B-H, Li S-X, Chen Y-C.  2020.  Theoretical study on memory-based optical converter with degenerate Zeeman states. Phys. Rev. A. 100(063843)Link
Q
Tsai, P-J, Hsiao Y-F, Chen Y-C.  2020.  Quantum storage and manipulation of heralded single photons in atomic quantum memories. Phys. Rev. Research. 2(033155)Link
M
Wei, Y-C, Lin S-X, Tsai P-J, Chen Y-C.  2020.  Memory-based optical polarization conversion in a double-Λ atomic system with degenerate Zeeman states. Sci Rep. 10, 13990 (2020) Link
L
Liu, Z-Y, Chen Y-H, Chen Y-C, Lo H-Y, Tsai P-J, Yu IA, Chen Y-C, Chen Y-F.  2016.  Large Cross-Phase Modulations at the Few-Photon Level. Phys. Rev. Lett. 117(203601)
I
Tu, MF, Ho JJ, Hsieh CC, Chen YC.  2009.  Intense SrF radical beam for molecular cooling experiments, Nov. Review of Scientific Instruments. 80:5., Number 11 AbstractWebsite

We have developed a continuous SrF radical beam for the loading of helium buffer gas cooling. The SrF molecules are efficiently generated by high-temperature chemical reaction of the solid precursor SrF(2) with boron in a graphite oven. The beam properties are characterized with laser-induced fluorescence spectroscopic method. We obtain a molecular flux of up to 2.1 x 10(15) sr(-1) s(-1) at the detection region for all rotational states. The dependence of the flux on oven temperature suggests that even higher flux is possible if a higher temperature in the oven is achieved. (C) 2009 American Institute of Physics. [doi:10.1063/1.3262631]

H
Hsiao, Y-F, Tsai P-J, Chen H-S, Lin S-X, Hung C-C, Lee C-H, Chen Y-H, Chen Y-F, Yu IA, Chen Y-C.  2018.  Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency. Phys. Rev. Lett. 120(183602)
F
E
C
Tung, SK, Chen YC, Lin CW, Hsu L, Yu IA.  2000.  Cooling atoms below 100 mu K, Apr. Chinese Journal of Physics. 38:395-399., Number 2 AbstractWebsite

We capture Rb-87 atoms from room-temperature background vapor with a magneto-optical trap (MOT). The temperature of the atoms in the MOT is 320 mu K as the result of Doppler cooling. We further employ polarization gradient cooling to lower atom temperature. The factors that can affect the performance of polarization gradient cooling have been systematically studied. An atom temperature of 75 mu K has been reached with the optimized conditions. Temperatures are measured by the release and recapture method and the time of flight method. Such cold atoms are ready for the evaporative cooling which will finally realize the Bose-Einstein condensation.

Hsiao, Y-F, Chen H-S, Tsai P-J, Chen Y-C.  2014.  Cold atomic media with ultrahigh optical depths. Phys. Rev. A. 90:054401. Abstract

We present an experimental study to achieve ultrahigh optical depths for cold atomic media with a two dimensional magneto-optical trap (MOT) of cesium. By combining large atom number, a temporally dark and compressed MOT, and Zeeman-state optical pumping, we achieve an optical depth of up to 1306 for the open transition of the cesium D1 line. Our work demonstrates that it is feasible to push the optical depth up to the 1000 level with a convenient MOT setup. This development paves the way to many important proposals in quantum optics and many-body physics.

Hsiao, Y-F, Tsai P-J, Lin C-C, Chen Y-F, Yu IA, Chen Y-C.  2014.  Coherence properties of amplified slow light by four-wave mixing. Optics Letters. 39(12):3394-3397. Abstract

We present an experimental study of the coherence properties of amplified slow light by four-wave mixing (FWM) in a three-level electromagnetically induced transparency (EIT) system driven by one additional pump field. High energy gain (up to 19) is obtained with a weak pump field (a few mW∕cm2) using optically dense cold atomic gases. A large fraction of the amplified light is found to be phase incoherent to the input signal field. The dependence of the incoherent fraction on pump field intensity and detuning and the control field intensity is systematically studied. With the classical input pulses, our results support a recent theoretical study by Lauk et al. [Phys. Rev. A 88, 013823 (2013)], showing that the noise resulting from the atomic dipole fluctuations associated with spontaneous decay is significant in the high gain regime. This effect has to be taken into consideration in EIT-based applications in the presence of FWM.

B
Wei, Y-C, Hsiao Y-F, Wu B-H, Tsai P-J, Chen Y-C.  2020.  Broadband coherent optical memory based on electromagnetically induced transparency. Phys. Rev. A. 102, 063720Link