Toward narrow-band heralded single photon source

Yu Chih, Tseng
Outline

• Motivation
• Introduction to heralded single photon generated by SPDC
• Experiment setup
• Recent results
• Future work
Motivation

About quantum information in optics:

Information carrier

$\text{v} = c$

atom

Δt_d

$|g_2\rangle$

$|g_1\rangle$

atom

atom 2
Why sub-MHz?

Electromagnetically induced transparency (EIT)

\[|1\rangle \rightarrow |2\rangle \rightarrow |3\rangle \]

\[\Omega_p \]

\[\Omega_c \]

\[\Delta t_d \]

\[|g_2\rangle \rightarrow |g_1\rangle \]

\[\Omega = \left(10^5\right) \text{MHz}; \Delta w = \Omega \left(10^0\right) \text{MHz} \]

\[\Delta w_{\text{EIT}} = \frac{\Omega_c^2}{\sqrt{OD\Gamma}} \]
Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

Ya-Fen Hsiao,¹,² Pin-Ju Tsai,¹,³ Hung-Shiue Chen,¹ Sheng-Xiang Lin,¹,³ Chih-Chiao Hung,¹ Chih-Hsi Lee,¹ Yi-Hsin Chen,⁴ Yong-Fan Chen,⁵ Ite A. Yu,⁴,⁵ and Ying-Cheng Chen¹,†

¹Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
²Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Central University, Taipei 10617, Taiwan
³Department of Physics, National Taiwan University, Taipei 10617, Taiwan
⁴Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
⁵Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan

(Received 27 May 2016; revised manuscript received 15 September 2017; published 4 May 2018)
Generate bi-photon pair

\[H_{spdc} = \hbar \kappa (a_s^\dagger a_i^\dagger e^{i(\Delta k \cdot r - \Delta \omega t)} + a_s a_i e^{-i(\Delta k \cdot r - \Delta \omega t)}) \]

\[|\psi > = e^{i \int_0^t H_{spdc}(t')dt'} |0 > \]

Perfect phase matching: \(e^{i(\Delta k \cdot r - \Delta \omega t)} \sim 1 \)

Small pump: \(|\psi > = C_0 |0 > + \kappa C_1 a_s^\dagger a_i^\dagger |0 > \)

Topica SHG 447 nm laser
Ideal linewidth:
\[\gamma = (1 - r) \frac{c}{2nL} \times 2\pi, n \sim 1.74, L \sim 4\text{cm (plane mirror)} \]
\[r_l = 99.99\%, r_r = 99.92\% \]
\[\Gamma_s = \Gamma_i = \gamma_l + \gamma_r \]
\[\Delta \omega_{FWHM} = 1.24 \text{ MHz} \times 2\pi \]
Future work
Improve mode matching condition of cavity

$$G_2(0) = \frac{4\Gamma_s \Gamma_i \kappa_1^2}{(\Gamma_s + \Gamma_i)^2} + R_1$$

$$R_1 = \frac{4\gamma_s \gamma_i \kappa_1^2}{\Gamma_s \Gamma_i (\Gamma_s + \Gamma_i)}$$

$$g_2(0) = \frac{G_2(0)}{R_1}, \text{ ideally } = 1 + \frac{\gamma}{2}$$

$$\gamma = 1.9 \times 10^6 \times 2\pi$$