Publications

Export 50 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
CC, K, WC H, CW K, ZF W, CC C, CC C, CL W, TC C, J S, LJ H.  2013.  Chemical principles for the design of a novel fluorescent probe with high cancer-targeting selectivity and sensitivity.. Integrative biology : quantitative biosciences from nano to macro. 5(10):1217-28. AbstractWebsite

Understanding of principles governing selective and sensitive cancer targeting is critical for development of chemicals for cancer diagnostics and treatment. We determined the underlying mechanisms of how a novel fluorescent small organic molecule, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC), selectively labels cancer cells but not normal cells. We show that BMVC is retained in the lysosomes of normal cells. In cancer cells, BMVC escapes lysosomal retention and localizes to the mitochondria or to the nucleus, where DNA-binding dramatically increases BMVC fluorescence intensity, allowing it to light up only cancer cells. Structure-function analyses of BMVC derivatives show that hydrogen-bonding capacity is a key determinant of lysosomal retention in normal cells, whereas lipophilicity directs these derivatives to the mitochondria or the nucleus in cancer cells. In addition, drug-resistant cancer cells preferentially retain BMVC in their lysosomes compared to drug-sensitive cancer cells, and BMVC can be released from drug-resistant lysosomes using lysosomotropic agents. Our results further our understanding of how properties of cellular organelles differ between normal and cancer cells, which can be exploited for diagnostic and/or therapeutic use. We also provide physiochemical design principles for selective targeting of small molecules to different organelles. Moreover, our results suggest that agents which can increase lysosomal membrane permeability may re-sensitize drug-resistant cancer cells to chemotherapeutic agents.

Chang, CC, Hsieh MC, Lin JC, Chang TC.  2012.  Selective photodynamic therapy based on aggregation-induced emission enhancement of fluorescent organic nanoparticles, Jan. Biomaterials. 33:897-906., Number 3 AbstractWebsite

Three binary molecule conjugates were designed and synthesized by conjugating a chromophore (3, 6-bis-(1-methyl-4-vinylpyridinium)-carbazole diiodide, BMVC) to mono-, bis- and trishydroxyl photosensitizers, respectively. BMVC plays the role of cancer cells recognizer; AIEE (aggregation-induced emission enhancement) generator and FRET (Fluorescence Resonance Energy Transfer) donor. The self assembling properties of these binary conjugates result in different degrees of AIEE and then achieve the formations of FONs (fluorescent organic nanoparticles), which present efficient FRET and singlet oxygen generations. Biologically, FONs-photosensitizers from these compounds were much more phototoxicities to cancer cell than to normal cell without significant dark toxicity. In addition, their intracellular fluorescent colors switching upon photo-excitation are expected to be used for further cell death biomarker applications. This improved photodynamic activity might be due to the aggregation of compounds in the cell that form FONs which can promote PDT (photodynamic therapy) and are observed in cancer cell but not normal cell.

Chang, CC, Chu JF, Kuo HH, Kang CC, Lin SH, Chang TC.  2006.  Solvent effect on photophysical properties of a fluorescence probe: BMVC, Jul-Oct. Journal of Luminescence. 119:84-90. AbstractWebsite

Fluorescence studies of 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC) in glycerol/water mixtures allow us to elucidate the photophysical behavior of BMVC upon interaction with different DNA structures. The very weak fluorescence emission of BMVC in highly polar solvents of water is attributed to an increase in nonradiative decay due to the intramolecular twist of the vinyl group induced by charge transfer. Increasing the solvent viscosity and rigidity could lead to large changes in the barrier height and substantial effects on relaxation processes, and result in an enhancement of the fluorescence quantum yield. Similarly, different binding interactions of BMVC with various DNA could perturb the frictions of the reorientation of the vinyl group. We suggest that the intramolecular twist of the vinyl group of BMVC is mainly responsible for the distinct fluorescence emissions under different local environments. (c) 2006 Elsevier B.V. All rights reserved.

Chang, TC, Chang CC.  2010.  Detection of G-quadruplexes in cells and investigation of G-quadruplex structure of d(T2AG3)4 in K+ solution by a carbazole derivative: BMVC. Methods Mol Biol. 608:183-206. AbstractWebsite

Verification of the existence of quadruplex structure in native human telomeres and determination of the major structure of d(T(2)AG(3))(4) (H24) in K(+) solution are the major questions regarding the structure of human telomeres. We have synthesized a fluorescent probe of 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC) that has a very high binding affinity for G-quadruplex H24. BMVC stabilizes quadruplex structures and acts as a sensitive probe to the local environment. Although the circular dichroism patterns of H24 are different in Na(+) and K(+) solutions, similar binding behaviors of BMVC to H24 in these solutions led us to suggest that the major G-quadruplex structure of H24 in K(+) solution is very likely similar to that in Na(+) solution. Of particular interest is the fluorescent band detected at -575 nm in quadruplex H24 and at -545 nm in duplex DNA. In addition, the intensity of BMVC fluorescence increases by two orders of magnitudes upon interaction with either duplex or G-quadruplex DNA. BMVC has a greater binding preference for G-quadruplex H24 than for duplex DNA. Analyzing the BMVC fluorescence at the ends of metaphase chromosomes and other regions of chromosomes allowed us to verify the presence of G-quadruplex structure in human telomeres for the first time. Using fluorescence lifetime imaging microscopy, the longer decay time of BMVC in G-quadruplex H24 than in duplex DNA allowed us to map the G-quadruplex structure in human metaphase chromosomes.

Chang, TC, Yang YP, Huang KH, Chang CC, Hecht C.  2005.  Investigation of thionin-DNA interaction by satellite hole spectroscopy, May. Optics and Spectroscopy. 98:655-660., Number 5 AbstractWebsite

The interactions of the two tautomers of thionin dye with DNA have been investigated by using satellite hole burning spectroscopy. Similar features in the absorption and satellite hole spectra of thionin in the presence of calf thymus (CT) DNA and polynucleotides [d(GC)(6)](2) (GC) suggested that thionin preferentially binds to GC rather than polynucleotides [d(AT)(6)](2) (AT). Different binding effects of the two tautomers to DNA could be observed. While the imino form fully intercalates into the DNA base pairs, the amino form is only partially intercalated. In addition, a broad hole associated with an antihole appeared in the presence of DNA, particularly in GC base pairs. The coincidence of the antihole with the absorption band of the amino form showed that the amino form is the photoproduct of the imino form. An increase in intensity of the broad hole and its antihole and the loss of nonresonant hole intensity upon interaction with CT DNA could be described by rapid ground state recovery resulting from fast charge transfer between the intercalated thionin and a guanine base quenching the internal conversion. (c) 2005 Pleiades Publishing, Inc.

Chang, CC, Chu JF, Kao FJ, Chiu YC, Lou PJ, Chen HC, Chang TC.  2006.  Verification of antiparallel G-quadruplex structure in human telomeres by using two-photon excitation fluorescence lifetime imaging microscopy of the 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide molecule, Apr 15. Analytical Chemistry. 78:2810-2815., Number 8 AbstractWebsite

Different G-quadruplex structures for the human telomeric sequence d(T(2)AG(3))(4) in vitro have been documented in the presence of sodium and potassium. Verification of the G-quadruplex structures in human telomeres in vivo is the main issue in establishing the biological function of the G-quadruplex structures in telomeres as well as the development of anticancer agents. Here we have applied two-photon excitation fluorescence lifetime imaging microscopy to measure the fluorescence lifetime of the BMVC molecule upon interaction with various DNA structures. The distinction in lifetime measured with submicrometer spatial resolution in two-photon excitation fluorescence lifetime imaging microscopy provides a powerful approach not only to verify the existence of the antiparallel G-quadruplex structure in human telomeres but also to map its localizations in metaphase chromosomes.

Chang, TC, Chang CC, Chu JF, Kao FJ, Lou PJ.  2006.  Detection of quadruplex DNA structures in human telomeres by using a fluorescence probe BMVC molecule, Sep 10. Abstracts of Papers of the American Chemical Society. 232:805-805. AbstractWebsite
n/a
Chang, CC, Chien CW, Lin YH, Kang CC, Chang TC.  2007.  Investigation of spectral conversion of d(TTAGGG)4 and d(TTAGGG)13 upon potassium titration by a G-quadruplex recognizer BMVC molecule. Nucleic Acids Res. 35:2846-60., Number 9 AbstractWebsite

We have introduced a G-quadruplex-binding ligand, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC), to verify the major structure of d(T2AG3)4 (H24) in potassium solution and examine the structural conversion of H24 in sodium solution upon potassium titration. The studies of circular dichroism, induced circular dichroism, spectral titration and gel competition have allowed us to determine the binding mode and binding ratio of BMVC to the H24 in solution and eliminate the parallel form as the major G-quadruplex structure. Although the mixed-type form could not be eliminated as a main component, the basket and chair forms are more likely the main components of H24 in potassium solution. In addition, the circular dichroism spectra and the job plots reveal that a longer telomeric sequence d(T2AG3)13 (H78) could form two units of G4 structure both in sodium or potassium solutions. Of particular interest is that no appreciable change on the induced circular dichroism spectra of BMVC is found during the change of the circular dichroism patterns of H24 upon potassium titration. Considering similar spectral conversion detected for H24 and a long sequence H78 together with the G4 structure stabilized by BMVC, it is therefore unlikely that the rapid spectral conversion of H24 and H78 is due to structural change between different types of the G4 structures. With reference to the circular dichroism spectra of d(GAA)7 and d(GAAA)5, we suggest that the spectral conversion of H24 upon potassium titration is attributed to fast ion exchange resulting in different loop base interaction and various hydrogen bonding effects.

Chang, TC, Chang CC, Kang CC.  2005.  Simple method in diagnosing cancer cells by a novel fluorescence probe BMVC, Aug 28. Abstracts of Papers of the American Chemical Society. 230:U241-U241. AbstractWebsite
n/a
Chang, TC, Chu JF, Tsai YL, Wang ZF.  2012.  Structure conversion and structure separation of G-quadruplexes investigated by carbazole derivatives. Curr Pharm Des. 18:2002-13., Number 14 AbstractWebsite

The challenge of G-quadruplexes is that the G-rich sequences can adopt various G4 structures and possibly interconvert among them, particularly under the change of environmental conditions. Both NMR and circular dichroism (CD) show the spectral conversion of d[AG3(T2AG3)3] (HT22) from Na-form to K-form after Na+/K+ ion exchange. No appreciable change on the induced CD spectra of BMVC molecule and the single molecule tethered particle motion of HT22 in Na+ solution upon K+ titration suggests that the spectral conversion is unlikely due to the structural conversion via fully unfolded intermediate. Although a number of mechanisms were proposed for the spectral change induced by the Na+/K+ ion exchange, determining the precise structures of HT22 in K+ solution may be essential to unravel the mechanism of the structural conversion. Thus, development of a new method for separating different structures is of critical importance for further individual verification. In the second part of this review, we describe a new approach based on "micelle-enhanced ultrafiltration" method for DNA structural separation. The BMVC, a G-quadruplex ligand, is first modified and then forms a large size of emulsion after ultrasonic emulsification, together with its different binding affinities to various DNA structures; for the first time, we are able to separate different DNA structures after membrane filtration. Verification of the possible structural conversion and investigation of structural diversity among various G4 structures are essential for exploring their potential biological roles and for developing new anticancer drugs.

Chang, TC, Chang CC.  2006.  G-quadruplex structure of d(TTAGGG)4 in potassium solution investigated by BMVC molecule, Sep 10. Abstracts of Papers of the American Chemical Society. 232:803-803. AbstractWebsite
n/a
Chang, CC, Chien CW, Lin YH, Kang CC, Chang TC.  2007.  Investigation of spectral conversion of d(TTAGGG)(4) and d(TTAGGG)(13) upon potassium titration by a G-quadruplex recognizer BMVC molecule, May. Nucleic Acids Research. 35:2846-2860., Number 9 AbstractWebsite

We have introduced a G- quadruplex- binding ligand, 3,6- bis( 1- methyl- 4- vinylpyridinium) carbazole diiodide ( BMVC), to verify the major structure of d( T(2)AG(3))(4) ( H24) in potassium solution and examine the structural conversion of H24 in sodium solution upon potassium titration. The studies of circular dichroism, induced circular dichroism, spectral titration and gel competition have allowed us to determine the binding mode and binding ratio of BMVC to the H24 in solution and eliminate the parallel form as the major G- quadruplex structure. Although the mixed- type form could not be eliminated as a main component, the basket and chair forms are more likely the main components of H24 in potassium solution. In addition, the circular dichroism spectra and the job plots reveal that a longer telomeric sequence d( T(2)AG(3))(13) ( H78) could form two units of G4 structure both in sodium or potassium solutions. Of particular interest is that no appreciable change on the induced circular dichroism spectra of BMVC is found during the change of the circular dichroism patterns of H24 upon potassium titration. Considering similar spectral conversion detected for H24 and a long sequence H78 together with the G4 structure stabilized by BMVC, it is therefore unlikely that the rapid spectral conversion of H24 and H78 is due to structural change between different types of the G4 structures. With reference to the circular dichroism spectra of d( GAA)(7) and d( GAAA)(5), we suggest that the spectral conversion of H24 upon potassium titration is attributed to fast ion exchange resulting in different loop base interaction and various hydrogen bonding effects.

Chang, CC, Kuo IC, Lin JJ, Lu YC, Chen CT, Back HT, Lou PJ, Chang TC.  2004.  A novel carbazole derivative, BMVC: a potential antitumor agent and fluorescence marker of cancer cells, Sep. Chem Biodivers. 1:1377-84., Number 9 AbstractWebsite

We have investigated a novel compound, 3,6-bis[2-(1-methylpyridinium)vinyl]carbazole diiodide (BMVC), for inhibiting telomerase activity and distinguishing human lung H1299 and oral Ca9-22 cancer cells from lung IMR90 and skin Detroit-551 normal fibroblast cells. The telomeric repeat amplification protocol (TRAP) assay shows that the concentration of BMVC that inhibits 50% of the telomerase activity (IC50) is ca. 0.05 microM. On the other hand, the cell-viability assay indicates that the cytotoxicity was less than 15% to the H1299 and Ca9-22 cancer cells, and almost negligible to the MRC-5 and Detroit-551 normal cells after incubation with 0.5 microM BMVC for 72 h. The low concentration of 0.05 microM of BMVC can inhibit telomerase activity but does not have general toxic effects to normal cells, implying that BMVC is a promising telomerase inhibitor. Moreover, wide-field fluorescence images of 0.1 microM BMVC-treated cells show bright fluorescence spots in the nuclei of the most H1299 and Ca9-22 cancer cells. Interestingly, similar fluorescence spots are hardly observed in the nuclei of the IMR90 and Detroit-551 normal cells, implying that BMVC might be a useful marker to distinguish tumor cells and normal cells.

Chien, CH, Chen WW, Wu JT, Chang TC.  2011.  Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy, Jan. Journal of Biomedical Optics. 16, Number 1 AbstractWebsite

Drosophila is one of the most valuable model organisms for studying genetics and developmental biology. The fat body in Drosophila, which is analogous to the liver and adipose tissue in human, stores lipids that act as an energy source during its development. At the early stages of metamorphosis, the fat body remodeling occurs involving the dissociation of the fat body into individual fat cells. Here we introduce a combination of coherent anti-Stokes Raman scattering (CARS) and two-photon excitation autofluorescence (TPE-F) microscopy to achieve label-free imaging of Drosophila in vivo at larval and pupal stages. The strong CARS signal from lipids allows direct imaging of the larval fat body and pupal fat cells. In addition, the use of TPE-F microscopy allows the observation of other internal organs in the larva and autofluorescent globules in fat cells. During the dissociation of the fat body, the findings of the degradation of lipid droplets and an increase in autofluorescent globules indicate the consumption of lipids and the recruitment of proteins in fat cells. Through in vivo imaging and direct monitoring, CARS microscopy may help elucidate how metamorphosis is regulated and study the lipid metabolism in Drosophila. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3528642]

Chien, CH, Chen WW, Wu JT, Chang TC.  2012.  Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy, Dec. J Biomed Opt. 17:126001., Number 12 AbstractWebsite

To improve our understanding of lipid metabolism, Drosophila is used as a model animal, and its lipid homeostasis is monitored by coherent anti-Stokes Raman scattering microscopy. We are able to achieve in vivo imaging of larval fat body (analogous to adipose tissue in mammals) and oenocytes (analogous to hepatocytes) in Drosophila larvae at subcellular level without any labeling. By overexpressing two lipid regulatory proteins--Brummer lipase (Bmm) and lipid storage droplet-2 (Lsd-2)--we found different phenotypes and responses under fed and starved conditions. Comparing with the control larva, we observed more lipid droplet accumulation by approximately twofold in oenocytes of fat-body-Bmm-overexpressing (FB-Bmm-overexpressing) mutant under fed condition, and less lipid by approximately fourfold in oenocytes of fat-body-Lsd-2-overexpressing (FB-Lsd-2-overexpressing) mutant under starved condition. Moreover, together with reduced size of lipid droplets, the lipid content in the fat body of FB-Bmm-overexpressing mutant decreases much faster than that of the control and FB-Lsd-2-overexpressing mutant during starvation. From long-term starvation assay, we found FB-Bmm-overexpressing mutant has a shorter lifespan, which can be attributed to faster consumption of lipid in its fat body. Our results demonstrate in vivo observations of direct influences of Bmm and Lsd-2 on lipid homeostasis in Drosophila larvae.

Chou, YS, Chang CC, Chang TC, Yang TL, Young TH, Lou PJ.  2013.  Photo-Induced Antitumor Effect of 3,6-Bis(1-methyl-4-vinylpyridinium) Carbazole Diiodide. Biomed Research International. AbstractWebsite

We have applied a fluorescent molecule 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC) for tumor targeting and treatment. In this study, we investigated the photo-induced antitumor effect of BMVC. In vitro cell line studies showed that BMVC significantly killed TC-1 tumor cells at light dose greater than 40 J/cm(2). The fluorescence of BMVC in the tumor peaked at 3 hours and then gradually decreased to reach the control level a. er 24 hours. In vivo tumor treatment studies showed BMVC plus light irradiation (iPDT) significantly inhibited the tumor growth. At day 24 a. er tumor implantation, tumor volume was measured to be 225 +/- 79 mm(3), 2542 +/- 181 mm(3), 1533 +/- 766 mm(3), and 1317 +/- 108 mm(3) in the iPDT, control, light-only, and BMVC-only groups, respectively. Immunohistochemistry studies showed the microvascular density was significantly lower in the iPDT group. Taken together, our results demonstrated that BMVC may be a potent tumor-specific photosensitizer (PS) for PDT.

Chu, JF, Chang TC, Li HW.  2010.  Single-Molecule TPM Studies on the Conversion of Human Telomeric DNA, Apr 21. Biophysical Journal. 98:1608-1616., Number 8 AbstractWebsite

Human telomere contains guanine-rich (G-rich) tandem repeats of single-stranded DNA sequences at its 3' tail. The G-rich sequences can be folded into various secondary structures, termed G-quadruplexes (G4s), by Hoogsteen basepairing in the presence of monovalent cations (such as Na(+) and K(+)). We developed a single-molecule tethered particle motion (TPM) method to investigate the unfolding process of G4s in the human telomeric sequence AGGG(TTAGGG)3 in real time. The TPM method monitors the DNA tether length change caused by formation of the G4, thus allowing the unfolding process and structural conversion to be monitored at the single-molecule level. In the presence of its antisense sequence, the folded G4 structure can be disrupted and converted to the unfolded conformation, with apparent unfolding time constants of 82 s and 3152 s. We also observed that the stability of the G4 is greatly affected by different monovalent cations. The folding equilibrium constant of G4 is strongly dependent on the salt concentration, ranging from 1.75 at 5 mM Na(+) to 3.40 at 15 mM Na(+). Earlier spectral studies of Na(+)- and K(+)-folded states suggested that the spectral conversion between these two different folded structures may go through a structurally unfolded intermediate state. However, our single-molecule TPM experiments did not detect any totally unfolded intermediate within our experimental resolution when sodium-folded G4 DNA molecules were titrated with high-concentration, excess potassium ions. This observation suggests that a totally unfolding pathway is likely not the major pathway for spectral conversion on the timescale of minutes, and that interconversion among folded states can be achieved by the loop rearrangement. This study also demonstrates that TPM experiments can be used to study conformational changes in single-stranded DNA molecules.

Chu, JF, Wang ZF, Tseng TY, Chang TC.  2011.  A Novel Method for Screening G-quadruplex Stabilizers to Human Telomeres, Jun. Journal of the Chinese Chemical Society. 58:296-300., Number 3 AbstractWebsite

We present a simple method based on the Cu(2+) induced unfolding of G-quadruplex (G4) of human telomere sequence d[AG(3)(T(2)AG(3))(3)] to screen a number of 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC) analogues for better G4 stabilizers. Using circular dichroism (CD), the screening results suggest that the tri-cations of 9-substituted BMVC derivatives are better G4 stabilizers than the bi-cations of BMVC. In addition, 3,6-bis(1-methyl-4-vinylpyrazinium)carbazole diiodide (BMVC4) is likely a better core molecule than BM VC for G4 stabilizers.

H
Hecht, C, Hermann P, Friedrich J, Chang CC, Chang TC.  2005.  Thionin in a cyclodextrin nanocavity: Measuring local compressibilities by pressure tuning hole burning spectroscopy, Sep 26. Chemical Physics Letters. 413:335-341., Number 4-6 AbstractWebsite

We present pressure tuning hole burning experiments on thionin with alpha-cyclodextrin (alpha-CD) and beta-cyclodextrin (beta-CD) in a glycerol/water glass. The low temperature absorption spectra do not show the formation of a caging complex. The pressure tuning data, however, show that the compressibility of the sample with beta-CD, where the formation of an inclusion complex is not restricted due to geometrical reasons increases as compared to the other samples. This is just the opposite of what one would expect. This increase is interpreted in terms of a reduced solvent density around the chromophore due to the hydrophobic effect. (c) 2005 Elsevier B.V. All rights reserved.

Hsieh, M-C, Chien C-H, Chang C-C, Chan T-C.  2013.  Aggregation induced photodynamic therapy enhancement based on linear and nonlinear excited FRET of fluorescent organic nanoparticles. Journal of Materials Chemistry B,. 1:2350-2357. AbstractWebsite

A binary molecule can self-assemble to form fluorescent organic nanoparticles (FONs) based on the Aggregation-Induced Emission Enhancement (AIEE) property and subsequently, presents an efficient fluorescence resonance energy transfer (FRET) to generate singlet oxygen under linear and nonlinear light sources. Biologically, this FON-photosensitizer is much more phototoxic to cancer cells than to normal cells without significant dark toxicity. Eventually, a new approach, called FON FRET-PDT or AIEE FRET-PDT, to promote the PDT effect is expected.

Huang, FC, Chang CC, Wang JM, Chang TC, Lin JJ.  2012.  Induction of senescence in cancer cells by the G-quadruplex stabilizer, BMVC4, is independent of its telomerase inhibitory activity, Sep. Br J Pharmacol. 167:393-406., Number 2 AbstractWebsite

BACKGROUND AND PURPOSE: Telomerase is the enzyme responsible for extending G-strand telomeric DNA and represents a promising target for treatment of neoplasia. Inhibition of telomerase can be achieved by stabilization of G-quadruplex DNA structures. Here, we characterize the cellular effects of a novel G-quadruplex stabilizing compound, 3,6-bis(4-methyl-2-vinylpyrazinium iodine) carbazole (BMVC4). EXPERIMENTAL APPROACH: The cellular effects of BMVC4 were characterized in both telomerase-positive and alternative lengthening of telomeres (ALT) cancer cells. The molecular mechanism of how BMVC4 induced senescence is also addressed. KEY RESULTS: BMVC4-treated cancer cells showed typical senescence phenotypes. BMVC4 induced senescence in both ALT and telomerase-overexpressing cells, suggesting that telomere shortening through telomerase inhibition might not be the cause for senescence. A large fraction of DNA damage foci was not localized to telomeres in BMVC4-treated cells and BMVC4 suppressed c-myc expression through stabilizing the G-quadruplex structure located at its promoter. These results indicated that the cellular targets of BMVC4 were not limited to telomeres. Further analyses showed that BMVC4 induced DNA breaks and activation of ataxia telangiectasia-mutated mediated DNA damage response pathway. CONCLUSIONS AND IMPLICATIONS: BMVC4, a G-quadruplex stabilizer, induced senescence by activation of pathways of response to DNA damage that was independent of its telomerase inhibitory activity. Thus, BMVC4 has the potential to be developed as a chemotherapeutic agent against both telomerase positive and ALT cancer cells.

Huang, FC, Chang CC, Lou PJ, Kuo IC, Chien CW, Chen CT, Shieh FY, Chang TC, Lin JJ.  2008.  G-quadruplex stabilizer 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide induces accelerated senescence and inhibits tumorigenic properties in cancer cells, Jun. Molecular Cancer Research. 6:955-964., Number 6 AbstractWebsite

Carbazole derivatives that stabilized G-quadruplex DNA structure formed by human telomeric sequence have been designed and synthesized. Among them, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC) showed an increase in G-quadruplex melting temperature by 13 degrees C and has a potent inhibitory effect on telomerase activity. Treatment of H1299 cancer cells with 0.5 mu mol/L BMVC did not cause acute toxicity and affect DNA replication; however, the BMVC-treated cells ceased to divide after a lag period. Hallmarks of senescence, including morphologic changes, detection of senescence-associated beta-galactosidase activity, and decreased bromodeoxyuridine incorporation, were detected in BMVC-treated cancer cells. The BMVC-induced senescence phenotype is accompanied by progressive telomere shortening and detection of the DNA damage foci, indicating that BMVC caused telomere uncapping after long-term treatments. Unlike other telomerase inhibitors, the BMVC-treated cancer cells showed a fast telomere shortening rate and a lag period of growth before entering senescence. Interestingly, BMVC also suppressed the tumor-related properties of cancer cells, including cell migration, colony-forming ability, and anchorage-independent growth, indicating that the cellular effects of BMVC were not limited to telomeres. Consistent with the observations from cellular experiments, the tumorigenic potential of cancer cells was also reduced in mouse xenografts after BMVC treatments. Thus, BMVC repressed tumor progression through both telomere-dependent and telomere-independent pathways.

I
IT, L, YL T, CC K, WC H, CL W, MY L, PJ L, JY S, HC W, HD W, TH T, ISang J, TC C.  2014.  BMVC test, an improved fluorescence assay for detection of malignant pleural effusions. Cancer medicine. 3(1):162-173.
J
JM, W, FC H, MH K, ZF W, TY T, LC C, SJ Y, TC C, JJ L.  2014.  Inhibition of Cancer Cell Migration and Invasion through Suppressing the Wnt1-mediating Signal Pathway by G-quadruplex Structure Stabilizers. The Journal of biological chemistry.
K
Kang, CC, Chen CT, Cho CC, Lin YC, Chang CC, Chang TC.  2008.  A dual selective antitumor agent and fluorescence probe: the binary BMVC-porphyrin photosensitizer, May. Chemmedchem. 3:725-728., Number 5 AbstractWebsite
n/a