Atomic dynamics of in nanoclusters on Si(100)

Citation:
Saranin, A. A., Zotov A. V., Kuyanov I. A., Kishida M., Murata Y., Honda S., Katayama M., Oura K., Wei C. M., & Wang Y. L. (2006).  Atomic dynamics of in nanoclusters on Si(100). Physical Review B. 74, 6., Sep, Number 12

Abstract:

Using scanning-tunneling microscopy and first-principles total-energy calculations, we have considered the structural properties of the so-called doped clusters formed by depositing additional 0.05 monolayer of In onto the 4x3-periodicity magic-cluster array in the In/Si(100) system. Low-temperature STM observations have revealed that most of the doped clusters have an asymmetric shape. According to the total-energy calculations, these clusters have plausibly Si6In8 composition. In such a cluster, one of the In atoms is mobile and can hop between four equivalent sites within a cluster. The hopping between sites, located in the different 2ax3a halves of the cluster, is characterized by the barrier of about 0.7 eV, and this hopping becomes frozen at 55 K. In contrast, the hopping between the neighboring sites within the same cluster half persists up to very low temperatures, as the barrier height here is an order of magnitude lower. Due to the above structural properties, the doped asymmetric Si6In8 cluster can be treated as a promising switch, logic gate, or memory cell of the atomic-scale size.

Notes:

ISI Document Delivery No.: 089HXTimes Cited: 3Cited Reference Count: 31Cited References: Ahn JR, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.113304 Appelbaum I, 2001, NANOTECHNOLOGY, V12, P391, DOI 10.1088/0957-4484/12/3/330 BASKI AA, 1991, PHYS REV B, V43, P9316, DOI 10.1103/PhysRevB.43.9316 BECKSTEDTE M, 1997, COMP PHYS COMMUN, V107, P187 Bunk O, 1998, APPL SURF SCI, V123, P104, DOI 10.1016/S0169-4332(97)00472-8 CAR R, 1985, PHYS REV LETT, V55, P2471, DOI 10.1103/PhysRevLett.55.2471 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 Cho K, 1996, PHYS REV B, V53, P4553, DOI 10.1103/PhysRevB.53.4553 Fuchs M, 1999, COMPUT PHYS COMMUN, V119, P67, DOI 10.1016/S0010-4655(98)00201-X HAMANN DR, 1989, PHYS REV B, V40, P2980, DOI 10.1103/PhysRevB.40.2980 Hata K, 2000, J VAC SCI TECHNOL A, V18, P1933, DOI 10.1116/1.582482 Hitosugi T, 1998, APPL SURF SCI, V130, P340, DOI 10.1016/S0169-4332(98)00081-6 Jia JF, 2002, APPL PHYS LETT, V80, P3186, DOI 10.1063/1.1474620 Jia JF, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.165412 Kotlyar V. G., 2003, SURF SCI NANOTECHNOL, V1, P33 Kotlyar VG, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.165401 Kotlyar VG, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.026104 Kresse G, 1996, PHYS REV B, V54, P11169, DOI 10.1103/PhysRevB.54.11169 KRESSE G, 1993, PHYS REV B, V47, P558, DOI 10.1103/PhysRevB.47.558 Kubo O, 2001, PHYS REV B, V64 KURAMOCHI H, 1994, PHYS REV LETT, V72, P932, DOI 10.1103/PhysRevLett.72.932 Lai MY, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.241404 Li JL, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.066101 LYDING JW, 1994, APPL PHYS LETT, V64, P2010, DOI 10.1063/1.111722 Perdew J. P., 1991, ELECT STRUCTURE SOLI, P11 PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 Saranin AA, 1999, PHYS REV B, V60, P14372, DOI 10.1103/PhysRevB.60.14372 Saranin AA, 2005, SURF SCI, V598, P136, DOI 10.1016/j.susc.2005.08.034 Takagi Y, 2004, APPL PHYS LETT, V84, P1925, DOI 10.1063/1.1668324 Takagi Y, 2004, SURF SCI, V559, P1, DOI [10.1016/j.susc.2004.04.010, 10.1016/k/susc.2004.04.010] Takeuchi N, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.245325Saranin, A. A. Zotov, A. V. Kuyanov, I. A. Kishida, M. Murata, Y. Honda, S. Katayama, M. Oura, K. Wei, C. M. Wang, Y. L.AMERICAN PHYSICAL SOCCOLLEGE PK

Website