Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
N
Nergui, N., Chen M. - J., Wang J. - K., Wang Y. - L., Hsing C. - R., Wei C. - M., & Tupchaya K. (2016).  Dependence of Adenine Raman Spectrum on Excitation Laser Wavelength: Comparison between Experiment and Theoretical Simulations. JOURNAL OF PHYSICAL CHEMISTRY A. 120, 8114-8122., {OCT 20}, Number {41} Abstract

n/a

Nguyen, D. - L., Hsing C. - R., & Wei C. - M. (2019).  Theoretical prediction of superconductivity in monolayer CoO2. Nanoscale. 11, 17052-17057. Abstract

Motivated by the synthesis of the layered structure CoO2via Li atom deintercalation from LixCoO2, herein, we investigated the electronic structure, lattice dynamics, electron–phonon interaction, and superconductivity of monolayer CoO2 using first-principles calculations. This 2D material was predicted to have a ferromagnetic ground state with a metallic band structure and the total magnetization of 0.83μB. Remarkably, the non-spin polarized calculations show that the monolayer CoO2 possesses phonon-mediated superconductivity at 25–28 K owing to its intermediate to strong electron–phonon coupling (EPC). The rather strong EPC in this compound is mainly driven by the acoustic phonons, making this compound one of the highest-temperature superconductors among the existing 2D materials. Moreover, the CoO2 sheets could be synthesized via exfoliation from bulk CoO2 owing to the relatively small interlayer binding energy while maintaining its stability under normal experimental conditions. Compared to its bulk and bilayer counterparts, monolayer CoO2 was found to have highest EPC.

Nguyen, D. - L., Wei C. - M., & Chou M. - Y. (2019).  Theoretical study of quantum size effects in thin Al(100), Al(110), and Al(111) films. PHYSICAL REVIEW B. 99, , {MAY 1}, Number {20} Abstract

n/a