Adsorption and desorption of stilbene from the Ag/Ge(111)-root 3 surface

Citation:
Wu, H. C., Chou L. W., Wang L. C., Lee Y. R., Wei C. M., Jiang J. C., Su C., & Lin J. C. (2008).  Adsorption and desorption of stilbene from the Ag/Ge(111)-root 3 surface. Journal of Physical Chemistry C. 112, 14464-14474., Sep, Number 37

Abstract:

The adsorption and desorption of stilbene on Ag/Ge(111)-(root 3 x root 3)R30 degrees (Ag/Ge(111)-root 3) were investigated using low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), and density functional theory (I)FT). Both trans- and cis-stilbenes form a (2 x 1) overlayer structure on Ag/Ge(111)-root 3 at a coverage of similar to 1 ML. The STM images show parallel strips with three equivalent directions, indicating a self-ordered molecular structure. At a coverage of less than I ML, the TPD of cis-stilbene shows only one peak, attributed to submonolayer desorption. The TPD peaks are indistinguishable for desorption of trans-stilbene from the surface submonolayer and multilayer. This is due to the simultaneous desorption and/or thinning of adsorbed multilayers during the TPD process, as determined from the STM analysis of adsorbed trans-stilbene structures before and after annealing. The TPD traces fit the half-order kinetics for molecular desorption of stilbene from Ag/Ge(111)-root 3 with desorption energies of 20.1 (cis-) and 21.3 kcal/mol (trans-), which are comparable with the calculated values using the DFT method. A plausible explanation for the stilbene desorption process on Ag/Ge(111)-root 3 is proposed and discussed.

Notes:

ISI Document Delivery No.: 347KTTimes Cited: 3Cited Reference Count: 26Cited References: Aizawa H, 1999, SURF SCI, V429, pL509, DOI 10.1016/S0039-6028(99)00424-0 Azzam W, 2003, LANGMUIR, V19, P8262, DOI 10.1021/la030165w Backstrand KM, 2000, J CHEM PHYS, V112, P7209, DOI 10.1063/1.481327 BAO Z, 2002, MRS BULL, P441 Chen Q, 2002, LANGMUIR, V18, P3219, DOI 10.1021/la011722m Chen Q, 2003, LANGMUIR, V19, P10164, DOI 10.1021/la035052r Dorko MJ, 2000, J PHYS CHEM B, V104, P11695, DOI 10.1021/jp00374k Dubois M, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.165435 Frisch M.J., 2004, GAUSSIAN 03 REVISION HAMMAR M, 1993, PHYS REV B, V47, P15669, DOI 10.1103/PhysRevB.47.15669 Jakubiak R, 1999, J PHYS CHEM A, V103, P2394, DOI 10.1021/jp9839450 Kulkarni AP, 2004, CHEM MATER, V16, P4556, DOI 10.1021/cm0494731 Nguyen TQ, 1999, J CHEM PHYS, V110, P4068, DOI 10.1063/1.478288 Nishimura SY, 1998, J PHYS CHEM B, V102, P6831, DOI 10.1021/jp981624i Padovani M, 2003, APPL SURF SCI, V212, P213, DOI 10.1016/S0169-4332(03)00083-7 SAKAMOTO K, 2004, SURF SCI NANOTECHNOL, V2, P210, DOI DOI 10.1380/EJSSNT.2004.210 Seidel C, 1997, SURF SCI, V374, P17, DOI 10.1016/S0039-6028(96)01186-7 Sheerin G, 2005, SURF SCI, V577, P211, DOI 10.1016/j.susc.2005.01.006 Slayton RM, 1996, J PHYS CHEM-US, V100, P15551, DOI 10.1021/jp961144w Su C, 1997, J CHEM PHYS, V107, P7543, DOI 10.1063/1.474993 Tsai CS, 2003, LANGMUIR, V19, P822, DOI 10.1021/la0207062 Tsai CS, 2005, J AM CHEM SOC, V127, P10788, DOI 10.1021/ja052448b VANEKEREN PJ, 1983, J CHEM THERMODYN, V15, P409, DOI 10.1016/0021-9614(83)90038-1 Wang MF, 2003, MACROMOLECULES, V36, P4411, DOI 10.1021/ma0217534 WU H, UNPUB Wu HC, 2007, LANGMUIR, V23, P12521, DOI 10.1021/la701845pWu, H. C. Chou, L. -W. Wang, L. -C. Lee, Y. -R. Wei, C. -M. Jiang, J. -C. Su, C. Lin, J. -C.National Science Council of the Republic of China [NSC-95-2113-M-001-039, NSC-90-2113-M-027-005]We thank Dr. C.-S. Tsai for his assistance in the initial stage of this work and Mr. T.-D. Chien for confirming the TPD results. We also gratefully acknowledge the financial support by the National Science Council of the Republic of China (Grants NSC-95-2113-M-001-039 and NSC-90-2113-M-027-005) of this research.AMER CHEMICAL SOCWASHINGTON

Website