Publications

Export 43 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V [W] X Y Z   [Show ALL]
W
Wu*, JJ, Ku CH, Wong TC, Wu CT, Chen KH, Chen LC.  2005.  Growth of nanocrystalline diamond films in CCl4/H2ambient. Thin Solid Films. 473:24-30.
Wu, J-J, Chen KH, Wen C-Y, Chen LC, Yu Y-C, Wang C-W, Lin E-K.  2000.  Effect of hydrogen addition on SiCN films growth in an electron cyclotron resonance plasma chemical vapor deposition reactor. J. Mater. Chem.. 10:783-787.
Wu, JT, Shih CF, Guo TH, Chen KH.  1997.  Raman Spectroscopic Studies of the Thermal Decomposition Mechanism of Ammonium Metavanadate. J. Mater. Chem. 7:2273.
Wu, JJ, Liu SC, Wu CT, Chen* KH, Chen LC.  2002.  Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes. Appl. Phys. Lett.. 81:1312-1314.
Wu, JC, Chen CC, Chen KH, Chang* YC.  2011.  Controlled growth of aligned Alpha-helical polypeptide brushes for tunable electrical conductivity. ,Appl. Phys. Lett.. 98:133304.
Wu, CT, Chu MW, Chen LC, Chen KH, Chen CW, Chen CH.  2010.  Spectroscopic characterizations of individual single-crystalline GaN nanowires in visible/ultra-violet regime. Micron. 41:827-832.
Wu, JJ, Wu CT, Liao YC, Lu TR, Chen LC, Chen KH, Hwa LG, Kuo CT, Ling KJ.  1999.  Deposition of silicon carbon nitride by ion-beam sputtering. Thin Solid Films. 355:417-422.
Wu, JT, Fang TH, Hsu CF, Yu YY, Wang GJ, Tang CW, Chen KH, Lii KH.  1998.  Synthesis and Characterization of an Organic-inorganic Hybrid Compound: [WO3(2,2’-bipyridine)]. J. Matter. Chem.. 8:2181.
Wu, JY, Chen KH.  1996.  Large Area Epitaxial Growth of Diamond Films. J. of the Vacuum Soc. of Taiwan. 9:18.
Wu, JS, Dhara SK, Wu CT, Chen KH, Chen YF, Chen* LC.  2002.  Growth and optical properties of self-organized Au2Si nanosphere peapoded in silicon oxide nanowires. Adv. Mater.. 14:1847-1850.
Wu, JJ, Chen KH, Wen CY, Chen* LC, Yu Y-C, Wang C-W, Lin E-K.  2001.  Effect of dilution gas on SiCN films growth using methylamine. Materials Chemistry and Physics. 72:240-244.
Wu, CT, Chen CW, Hu MS, Chen KH, Chen LC, Chu MW, Chen CH.  2010.  Anisotropic surface plasmon excitation in Au/silica nanowire. Appl. Phys. Lett.. 96:236106.
Wu, JJ, Chen KH, Wen C-Y, Chen LC, Lo HJ, Lin ST.  2000.  Effect of carbon sources on SiCN films growth in an electron cyclotron resonance plasma chemical vapor deposition reactor. Diamond & Related Materials. 9:556-561.
Wu, JJ, Lu TR, Wu CT, Wang TY, Chen LC, Chen KH, Kuo CT, Yu YC, Wang CW, Lin EK.  1999.  Nano-carbon nitride synthesis from a bio-molecular target for ion beam sputtering at low temperature. Diamond and Related Materials. 8:605-609.
Wu, JT, Chuang CJ, Chang KI, Yang CH, Chen KH.  1997.  Raman Spectroscopic Studies of Sulfation of Cerium Oxide. Appl. Catalysis B : Environmental. 12:309-324.
Wu, JS, Chen YF, Dhara S, Wu CT, Chen KH, Chen* LC.  2003.  Interface energy of Au7Si grown in the interfacial layer of truncated hexagonal dipyramidal Au nanoislands on polycrystalline-silicon. Appl. Phys. Lett.. 82:4468-4470.
Wu, CT, Chu MW, Liu CP, Chen KH, Chen LC, Chen CW, Chen CH.  2012.  Studies of electronic excitations of rectangular ZnOnanorods by electron energy-loss spectroscopy. Plasmonics. 7:123-130.
Wright, JS, Lim W, Gila BP, Pearton* SJ, Ren F, Lai WT, Chen LC, Hu MS, Chen KH.  2009.  Pd-catalyzed hydrogen sensing with InN nanobelts. J. Vac. Sci. Technol.. B 27:L8-10.
Wong, DP, Suriyaprabha R, Yuvakumar R, Rajendran V, Chen YT, Hwang BJ, Chen LC, Chen KH.  2014.  Binder-free rice husk-based silicon-graphene composite as energy efficient Li-ion battery anodes. J. Mater. Chem. A. 2:13437-13441.
Wong, DP, Lien HT, Chen YT, Chen KH, Chen LC.  2012.  Patterned growth of nanocrystalline silicon thin films through magnesiothermic reduction of soda lime glass. Green Chemistry. 14:896-900.
Wong, DP, Huang CY, Chien WL, Chang CE, Ganguly A, Lyu LM, Hwang JS, Chen LC, Chen KH.  2016.  Enhanced thermoelectric performance in percolated bismuth sulfide composite. RSC Advances . 6:98952.
Wen, CY, Wu JJ, Lo HJ, Chen LC, Chen KH, Lin ST, Yu Y-C, Wang C-W, Lin E-K.  2000.  Methylamine growth of SiCN films using ECR-CVD. Mat. Res. Soc. Symp.. :606,115-120.
Wei-ChaoChen, Tunuguntla V, Min-HsuehChiu, Lian-JiunLi, Shown I, Lee C-H, Hwang J-S, Chen L-C, Chen K-H.  2017.  Co-solvent effect on microwave-assisted Cu2ZnSnS4 nanoparticles synthesis for thin film solar cell. Solar Energy Materials and Solar Cells. 161:416-423.
Wei-ChaoChen, Cheng-YingChen, Tunuguntla V, HungLu S, ChaochinSu, Lee C-H, Chen K-H, Chen L-C.  2016.  Enhanced solar cell performance of Cu2ZnSn(S,Se)4 thin films through structural control by using multi-metallic stacked nanolayers and fast ramping process for sulfo-selenization. Nano Energy. 30:762-770.
Wei-ChaoChen, Cheng-YingChen, Lin Y-R, Chang J-K, Chen C-H, Chiu Y-P, Wu C-I, Chen K-H, Chen L-C.  2019.  Interface engineering of CdS/CZTSSe heterojunctions for enhancing the Cu2ZnSn(S,Se)4 solar cell efficiency. Materials Today Energy. 13:256-266. AbstractWebsite

Interface engineering of CdS/CZTS(Se) is an important aspect of improving the performance of buffer/absorber heterojunction combination. It has been demonstrated that the crossover phenomenon due to the interface recombination can be drastically eliminated by interface modification. Therefore, in-depth studies across the CdS/CZTS(Se) junction properties, as well as effective optimization processes, are very crucial for achieving high-efficiency CZTSSe solar cells. Here, we present a comprehensive study on the effects of soft-baking (SB) temperature on the junction properties and the corresponding optoelectronic and interface-structural properties. Based on in-depth photoemission studies corroborated with structural and composition analysis, we concluded that interdiffusion and intermixing of CZTSSe and CdS phases occurred on the Cu-poor surface of CZTSSe at elevated SB temperatures, and the interface dipole moments induced by electrostatic potential fluctuation were thus significantly eliminated. In contrast, with low SB temperature, the CdS/CZTSSe heterojunction revealed very sharp interface with very short interdiffusion, forming interface dipole moments and drastically deteriorating device performance. These post thermal treatments also significantly suppress defect energy level of interface measured by admittance spectroscopy from 294 to 109 meV due to CdS/CZTSSe interdiffusion. Meanwhile, the interdiffusion effects on the shift of valence band maximum, conduction band minimum and band offset across the heterojunction of thermally treated CdS/CZTSSe interface are spatially resolved at the atomic scale by measuring the local density of states with cross-sectional scanning tunneling microscopy and spectroscopy. A significant enhancement in the power conversion efficiency from 4.88% to 8.48% is achieved by a facile interface engineering process allowing a sufficient intermixing of CdS/Cd and CZTSSe/Se phases without detrimental recombination centers.