Syum, Z, Venugopal B, Sabbah A, Billo T, Chou T-chin, Wu H-L, Chen L-C, Chen K-H.
2021.
Superior lithium-ion storage performance of hierarchical tin disulfide and carbon nanotube-carbon cloth composites, 2021. Journal of Power Sources. 482:228923.
AbstractTin-based composites are promising anode materials for high-performance lithium-ion batteries (LIBs); however, insufficient conductivity, as well as fatal volume expansion during cycling lead to poor electrochemical reversibility and cycling stability. In this work, we demonstrate the lithium-ion storage behaviors of SnS2 anode material deposited on different electrode supports. The SnS2 grown on 3D hierarchical carbon nanotube-carbon cloth composites (SnS2-CNT-CC) shows superior capacity retention and cycle stability, compared to that on planar Mo sheets and carbon cloth. The specific capacity of SnS2 on Mo, CC, and CNT-CC is around 240, 840, and 1250 g−1, respectively. The SnS2-CNT-CC electrode outperforms in the cyclic performance and rate capability compared to other electrode configurations due to the multi-electron pathway and high surface area derived from 3D hierarchical CNT-CC electrode support. Furthermore, a significant decrease in the charge transfer resistance is observed by utilizing 3D hierarchical CNT-CC electrode support. The use of 3D hierarchical structures as electrode support could be the best alternative to enhance the electrochemical performances for the next generation LIBs.
Syum, Z, Billo T, Sabbah A, Venugopal B, Yu S-Y, Fu F-Y, Wu H-L, Chen L-C, Chen K-H.
2021.
Copper Zinc Tin Sulfide Anode Materials for Lithium-Ion Batteries at Low Temperature, 2021. ACS Sustainable Chemistry & EngineeringACS Sustainable Chemistry & Engineering. : American Chemical Society
Abstractn/a
Syum, Z, Billo T, Sabbah A, kumar Anbalagan A, Quadir S, Hailemariam AG, Sabhapathy P, Lee C-H, Wu H-L, Chen L-C, Chen K-H.
2023.
Enhancing the lithium-ion storage capability of Cu2ZnSnS4 anodes via a nitrogen-doped conductive support, 2023. Chemical Engineering Journal. 465:142786.
AbstractAchieving lithium-ion batteries with both excellent electrochemical performance and cycling stability is a top priority for their real-world applications. This work reports high-performance and stable Cu2ZnSnS4 (CZTS) anode materials encapsulated by nitrogen-doped carbon (CZTS@N-C) for advanced lithium-ion battery application. Ex-situ X-ray photoelectron spectroscopy and transmission electron microscopy revealed that the nitrogen-doped carbon network features a more conducive solid-electrolyte interphase that enables lower charge-transfer resistance and fast Li+ diffusion kinetics with negligible initial irreversible capacity loss. As a result, the CZTS@N-C electrode delivers a significantly enhanced capacity of 710 mAh g−1 with 73% capacity retention after 220 cycles at a current rate of 0.5 mA g−1 and superior rate performance compared to that of unmodified CZTS. Additionally, the study sheds light on the fast lithiation dynamics chemistry of CZTS@N-C through kinetics analysis, explored by in-situ Raman, ex-situ X-ray absorption, and in-situ electrochemical impedance. This study provides a new approach for fabricating high-performance, durable conductive polymer-encapsulated low-cost transition-metal-sulfide anode materials.
Sun, CL, Hsu YK, Lin YG, Chen KH, Bock C, MacDougall B, Wu X, Chen LC.
2009.
Ternary PtRuNi nanocatalysts supported on N-doped carbon nanotubes: deposition process, materials characterization, and electrochemistry. J. Electrochem. Soc.. 156:B1249-B1252.
Su, T-Y, Wang T-H, Wong DP, Wang Y-C, Huang A, Sheng Y-C, Tang S-Y, Chou T-chin, Chou T-L, Jeng H-T, Chen L-C, Chen K-H, Chueh Y-L.
2021.
Thermally Strain-Induced Band Gap Opening on Platinum Diselenide-Layered Films: A Promising Two-Dimensional Material with Excellent Thermoelectric Performance, 2021. Chemistry of MaterialsChemistry of Materials. 33(10):3490-3498.: American Chemical Society
Abstractn/a
Shown, I, Samireddi S, Chang Y-C, Putikam R, Chang P-H, Sabbah A, Fu F-Y, Chen W-F, Wu C-I, Yu T-Y, Chung P-W, Lin MC, Chen L-C, Chen K-H.
2018.
Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light, 2018. Nature Communications. 9(1):169.
AbstractPhotocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an l-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS2 (SnS2-C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS2 lattice, resulting in different photophysical properties as compared with undoped SnS2. This SnS2-C photocatalyst significantly enhances the CO2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS2-C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO2 reduction under visible light, where the in situ carbon-doped SnS2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.
Shown, I, Chen W-F, Chen K-H, Chen L-C.
2023.
Applications of X-ray Spectroscopy in Carbon Dioxide Reduction, 2023/08/30. Applications of X-ray Techniques to Nanomaterials for Energy Research. Volume 24:155-186.: WORLD SCIENTIFIC
AbstractThe following sections are included: Introduction XAS for CO2 Reduction Electrochemical CO2 Reduction Photochemical CO2 Reduction Summary and Proposed Research Prospects Acknowledgments ReferencesThe following sections are included: Introduction XAS for CO2 Reduction Electrochemical CO2 Reduction Photochemical CO2 Reduction Summary and Proposed Research Prospects Acknowledgments References
Shown, I, Ganguly A, Chen L-C, Chen K-H.
2015.
Conducting polymer-based flexible supercapacitor, 2015. Energy Science & EngineeringEnergy Science & Engineering. 3(1):2-26.: John Wiley & Sons, Ltd
AbstractAbstract Flexible supercapacitors, a state-of-the-art material, have emerged with the potential to enable major advances in for cutting-edge electronic applications. Flexible supercapacitors are governed by the fundamentals standard for the conventional capacitors but provide high flexibility, high charge storage and low resistance of electro active materials to achieve high capacitance performance. Conducting polymers (CPs) are among the most potential pseudocapacitor materials for the foundation of flexible supercapacitors, motivating the existing energy storage devices toward the future advanced flexible electronic applications due to their high redox active-specific capacitance and inherent elastic polymeric nature. This review focuses on different types of CPs-based supercapacitor, the relevant fabrication methods and designing concepts. It describes recent developments and remaining challenges in this field, and its impact on the future direction of flexible supercapacitor materials and relevant device fabrications.
Shit, SC, Shown I, Paul R, Chen K-H, Mondal J, Chen L-C.
2020.
Integrated nano-architectured photocatalysts for photochemical CO2 reduction, 2020. Nanoscale. 12(46):23301-23332.: The Royal Society of Chemistry
AbstractRecent advances in nanotechnology, especially the development of integrated nanostructured materials, have offered unprecedented opportunities for photocatalytic CO2 reduction. Compared to bulk semiconductor photocatalysts, most of these nanostructured photocatalysts offer at least one advantage in areas such as photogenerated carrier kinetics, light absorption, and active surface area, supporting improved photochemical reaction efficiencies. In this review, we briefly cover the cutting-edge research activities in the area of integrated nanostructured catalysts for photochemical CO2 reduction, including aqueous and gas-phase reactions. Primarily explored are the basic principles of tailor-made nanostructured composite photocatalysts and how nanostructuring influences photochemical performance. Specifically, we summarize the recent developments related to integrated nanostructured materials for photocatalytic CO2 reduction, mainly in the following five categories: carbon-based nano-architectures, metal–organic frameworks, covalent-organic frameworks, conjugated porous polymers, and layered double hydroxide-based inorganic hybrids. Besides the technical aspects of nanostructure-enhanced catalytic performance in photochemical CO2 reduction, some future research trends and promising strategies are addressed.
Shelke, AR, Wang H-T, Chiou J-W, Shown I, Sabbah A, Chen K-H, Teng S-A, Lin I-A, Lee C-C, Hsueh H-C, Liang Y-H, Du C-H, Yadav PL, Ray SC, Hsieh S-H, Pao C-W, Tsai H-M, Chen C-H, Chen K-H, Chen L-C, Pong W-F.
2022.
Bandgap Shrinkage and Charge Transfer in 2D Layered SnS2 Doped with V for Photocatalytic Efficiency Improvement. Small. n/a:2105076., Number n/a
AbstractAbstract Effects of electronic and atomic structures of V-doped 2D layered SnS2 are studied using X-ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X-ray absorption fine structure measurements at V K-edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X-ray absorption near-edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,β resonant inelastic X-ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo-excited electrons and effective carrier separation in layered SnS2. Additionally, valence-band photoemission spectra and S K-edge XANES indicate that the density of states near/at valence-band maximum is shifted to lower binding energy in V-doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first-principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V-doped SnS2.
Samireddi, S, Aishwarya V, Shown I, Muthusamy S, Unni SM, Wong K-T, Chen K-H, Chen L-C.
2021.
Synergistic Dual-Atom Molecular Catalyst Derived from Low-Temperature Pyrolyzed Heterobimetallic Macrocycle-N4 Corrole Complex for Oxygen Reduction. Small. 17:2103823., Number 46
AbstractAbstract A heterobimetallic corrole complex, comprising oxygen reduction reaction (ORR) active non-precious metals Co and Fe with a corrole-N4 center (PhFCC), is successfully synthesized and used to prepare a dual-atom molecular catalyst (DAMC) through subsequent low-temperature pyrolysis. This low-temperature pyrolyzed electrocatalyst exhibited impressive ORR performance, with onset potentials of 0.86 and 0.94 V, and half-wave potentials of 0.75 and 0.85 V, under acidic and basic conditions, respectively. During potential cycling, this DAMC displayed half-wave potential losses of only 25 and 5 mV under acidic and alkaline conditions after 3000 cycles, respectively, demonstrating its excellent stability. Single-cell Nafion-based proton exchange membrane fuel cell performance using this DAMC as the cathode catalyst showed a maximum power density of 225 mW cm−2, almost close to that of most metal–N4 macrocycle-based catalysts. The present study showed that preservation of the defined CoN4 structure along with the cocatalytic Fe–Cx site synergistically acted as a dual ORR active center to boost overall ORR performance. The development of DAMC from a heterobimetallic CoN4-macrocyclic system using low-temperature pyrolysis is also advantageous for practical applications.