Publications

Export 39 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I [J] K L M N O P Q R S T U V W X Y Z   [Show ALL]
B
Jarwal, B, Abbas S, Chou T-L, Vailyaveettil SM, Kumar A, Quadir S, Ho T-T, Wong DP, Chen L-C, Chen K-H.  2024.  Boosting Thermoelectric Performance in Nanocrystalline Ternary Skutterudite Thin Films through Metallic CoTe2 Integration, 2024. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces. 16(12):14770-14780.: American Chemical Society AbstractWebsite
n/a
C
Chen, LC, Chen CK, Wei SL, Bhusari DM, Chen KH, Chen YF, Jong YC, Huang YS.  1998.  Crystalline silicon carbon nitride: a wide band gap semiconductor. Appl. Phys. Lett.. 72:2463-2465.
Chen, LC, Chen CK, Wei SL, Bhusari DM, Chen KH, Chen YF, Jong YC, Huang YS.  1998.  Crystalline Silicon Carbon Nitride: A Wide Band Gap Semiconductor. Appl. Phys. Lett.. 72:2463.
D
Huang, YF, Jen YJ, Chen LC, Chen KH, Chattopadhyay S.  2015.  Design for approaching cicada-wing reflectance in low and high index biomimetic nanostructures. ACS Nano . 9:301-311.
E
Jana, D, Sun CL, Chen LC, Chen KH.  2013.  Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Progress in Materials Science. 58:565–635.
Chang, CY, Lan TW, Chi GC, Chen* LC, Chen KH, Chen JJ, Jang S, Ren F, Pearton SJ.  2006.  Effect of ozone cleaning and annealing on Ti/Al/Pt/Au ohmic contacts on GaN nanowires. Electrochemical and Solid-State Lett.. 9:G155-G157.
Huang, BR, Jou S, Wu YM, Chen KH, Chen LC.  2010.  Effect of XeF laser treatment on structure of nanocrystalline diamond films. Diamond & Relat. Mater.. 19:445.
Juan, CP, Tsai CC, Chen KH, Chen LC, Cheng HC.  2005.  Effects of high-density oxygen plasma post-treatment on field emission properties of carbon nanotube field-emission displays. Jpn. J. Appl. Phys.. 44:8231-8236.
Das*, D, Jana M, Barua AK, Chattopadhyay S, Chen LC, Chen KH.  2002.  Electrical, thermal and structural properties of microcrystalline Si thin films. Jpn.Appl. Phys. Lett.. 41:L229-232.
Hsieh, YP, Chen HY, Lin MZ, Shiu SC, Hofmann M, Chern MY, Jia X, Yang YJ, Chang HJ, Huang HM, Tseng SC, Chen* LC, Chen KH, Lin CF, Liang* CT, Chen YF.  2009.  Electroluminescence from ZnO/Si-nanotips light emitting diodes. Nano Letters. 9:1839.
and H.M. Tsai, Jan CJ, Chiou JW, Pong* WF, Chen KH, et al.  2001.  Electronic and bonding structures of amorphous Si-C-N thin films by X-ray-absorption spectroscopy. Appl. Phys. Lett.. 79:2393-2395.
Ray, SC, Tsai HM, Bao CW, Chiou JW, Jan JC, Kumar K, Pong* WF, Tsai M-H, Chattopadhyay S, Chen LC, Chien SC, Lee MT, Lin ST, Chen KH.  2004.  Electronic and bonding structures of B-C-N thin films by X-ray absorption and photoemission spectroscopy. J. Appl. Phys. . 96:208-211.
Chiou, JW, Yueh CL, Jan JC, Tsai HM, Pong* WF, Hong IH, Klauser R, Tsai MH, Chang YK, Chen YY, Wu CT, Chen KH, Wei SL, Wen CY, Chen LC, Chuang TJ.  2002.  Electronic structure at the carbon nanotube tips studied by X-ray-absorption spectroscopy and scanning photoelectron microscopy. Appl. Phys. Lett.. 81:4189-4191.
Ashebir, ME, Sabhapathy P, Nasr O, Modak V, Moradlou O, Sabbah A, Huang C-Y, Nachimuthu S, Jiang J-C, Hu Y-L, Hung C-H, Chen L-C, Chen K-H.  2025.  Electronic structure engineering of nickel single-atom catalyst by phosphorous for efficient electrocatalytic CO2 reduction reaction in a proton-rich microenvironment, 2025. 509:161319. AbstractWebsite

The electrocatalytic carbon dioxide reduction reaction (eCO2RR) in an acidic environment is crucial for mitigating carbonate and bicarbonate formation while enhancing CO2 conversion efficiency. However, the hydrogen evolution reaction (HER) often outcompetes eCO2RR in a proton-rich microenvironment, posing a significant challenge. This study introduces an in-situ phosphatizing method to alter the electronic structure of a Ni–N4 single-atom catalyst (Ni–N3PC), thereby suppressing HER and promoting eCO2RR performance in acidic environments. The Ni–N3PC catalyst achieves a CO Faradaic efficiency (FE) exceeding 90 % over a wide potential range, high carbon conversion efficiency, a CO partial current density of –357.7 mA cm−2, and long-term stability for 100 h at –100 mA cm−2 with a FE of 85 %. Electrochemical impedance spectroscopy and turnover frequency analysis reveal that Ni–N3PC exhibits lower charge-transfer resistance and higher intrinsic activity, respectively. The structural characterization using X-ray absorption spectroscopy confirms the formation of Ni–P and Ni–N bonds while scanning transmission electron microscopy shows atomically dispersed Ni atoms on carbon networks. Density functional theory calculations further support the experimental results, showing that Ni–N3PC significantly lowers the energy barrier for the key *COOH intermediate, resulting in outstanding eCO2RR performance. This research provides valuable insights into the design of highly efficient Ni single-atom catalysts for industrial eCO2RR applications.

Chiou, JW, Jan JC, Tsai HM, Pong* WF, Tsai MH, Hong IH, Klauser R, Lee JF, Hsu CW, Lin HM, Chen CC, Shen CH, Chen LC, Chen KH.  2003.  Electronic structure of GaN nanowire studied by X-ray-absorption spectroscopy and scanning photoelectron microscopy. Appl. Phys. Lett.. 82:3949-3951.
Yeh, CL, Jan CJ, Chiou JW, Pong* WF, Tsai MH, Chang YK, Chen YY, Lee JF, Tseng PK, Wei SL, Wen CY, Chen LC, Chen KH.  2001.  Electronic structure of the Fe-layer catalyzed carbon nanotubes studies by X-ray-absorption spectroscopy. Appl. Phys. Lett.. 79:3179-3181.
J. Wang, K.H. Chen, ME.  1988.  Energy Llocalization in Infrared Multiphoton Excited CF2Cl2 Studied by Time Resolved Raman Spectroscopy. Int. Conf. Quantum Electronics. :496., Tokyo Japan: Tech. Digest
Yusuf Fakhri, M, Lai W-C, Jarwal B, Hsieh W-Z, Tseng Y-H, Ho T-T, Bayikadi KS, Valiyaveettil SM, Ganesan P, Chiang C-Y, Chen L-C, Chen K-H.  2025.  Enhanced low-temperature thermoelectric properties in textured polycrystalline SnS Co-doped with Na and Ag, 2025. 1018:179124. AbstractWebsite

Tin monosulfide (SnS), an affordable group IV-VI binary compound, has emerged as a promising semiconductor due to its abundance and low toxicity. The exceptionally low thermal conductivity from the strong lattice anharmonicity makes this material suitable for thermoelectric applications. However, the poor thermoelectric properties of polycrystalline, compared to its single-crystal counterpart, remain the challenge. Furthermore, the anisotropic performance based on the sintering process complicates the preparation of this polycrystalline material. In this study, we successfully improved the electrical transport properties of polycrystalline SnS by employing the in-plane transport properties with texture modulation from hot-pressing at 973 K. This enhancement led to the high electrical conductivity of ≈ 55 S cm−1 in polycrystalline Na-doped SnS observed at room temperature. Additionally, the hole carrier concentration of p-type SnS was further optimized by co-doping of Na and Ag. Our co-doped SnS exhibits a relatively high power factor peak of ≈ 4.49 μWcm−1K−2 at 473 K. With the significant improvement of the electrical conductivities, the thermal conductivities remained unaltered. This work successfully demonstrated a substantial enhancement by ∼66.7 % in the thermoelectric figure of merit (zT) from 0.18 to 0.3 at a relatively low temperature of 573 K in polycrystalline SnS via the microstructural modification from texturing and the optimization of carrier concentration from co-doping.

Ho, T-T, Jokar E, Quadir S, Chen R-S, Liu F-C, Cheng-YingChen, Chen K-H, Chen L-C.  2022.  Enhancing the photovoltaic properties of SnS-Based solar cells by crystallographic orientation engineering, 2022. Solar Energy Materials and Solar Cells. 236:111499. AbstractWebsite

Tin monosulfide (SnS) is a promising light-harvesting material for solar cell applications, owing to its potential for large-scale production, cost-effectiveness, eco-friendly source materials, and long-term stability. However, SnS crystallizes in an orthorhombic structure, which results in a highly anisotropic charge transport behavior. Tailoring the crystallographic orientation of the SnS absorber layer plays a critical role in the enhancement of the transfer of charge carriers and the power conversion efficiency (PCE). By controlling the substrate tilting angle and temperature ramp rate in vapor transport deposition, the crystal growth orientation was tuned to a preferred direction which significantly suppressed the unfavorable (040) crystallographic plane. Through the combination of these two approaches, the PCE could be increased from 0.11% to 2%. The effect of the tilting angle was numerically simulated to investigate its role in controlling the film uniformity and directing the film growth. In addition, the correlation between the texture coefficient of the (040) plane and the charge transport properties was determined by a combination of analytical methods such as device performance studies, electrochemical impedance spectroscopy, along with transient photovoltage, space-charge-limited current, and dark current measurements. These techniques were blended together to prove that the marked improvement in PCE can be ascribed to a reduced charge recombination (in both SnS bulk and interfaces) and an enhanced hole mobility.

Chen, KH, Wu JY, Chen LC, Juan CC, Hsu T.  1995.  Epitaxial Growth of Diamond Films for Electronic Applications. the 188th Meeting of the Electrochemical Society. :Vol95-21,p55-69., Chicago
F
Juan, CP, Tsai CC, Chen KH, Chen LC, Cheng HC.  2005.  Fabrication and characterization of lateral field emission device based on carbon nanotubes. Jpn. J. Appl. Phys.. 44:2612-2617.
Jana, D, Chen LC, Chen CW, Chattopadhyay S, Chen KH.  2007.  A first principles study of the optical properties of BxCy single wall nanotubes. Carbon. 45:1482-1491.
Jana*, D, Chakraborti A, Chen LC, Chen CW, Chen KH.  2009.  A first principles study of the optical properties of CxNy single walled nanotubes. Nanotechnology. 20:175701.
G
Chen, LC, Chen CK, Bhusari DM, Chen KH, Wei SL, Chen YF, Jong YC, Lin DY, Li CF, Huang YS.  1997.  Growth of Ternary Silicon Carbon Nitride as a New Wide Band Gap Material. MRS Symp.. :Vol.468,31.
I
Huang, YF, Chattopadhyay S, Jen YJ, Peng CY, Liu TA, Hsu YK, Pan CL, Lo HC, Hsu CH, Chang YH, Lee CS, Chen KH, Chen LC.  2007.  Improved broadband, and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotechnology. 2:770-774.