Bayikadi, KS, Imam S, Tee W-S, Kavirajan S, Chang C-Y, Sabbah A, Fu F-Y, Liu T-R, Chiang C-Y, Shukla D, Wu C-T, Chen L-C, Chou M-Y, Chen K-H, Sankar R.
2024.
Ultra-low lattice thermal conductivity driven high thermoelectric figure of merit in Sb/W co-doped GeTe, 2024. Journal of Materials Chemistry A. 12(44):30892-30905.: The Royal Society of Chemistry
AbstractHigh thermoelectric performance is a material challenge associated mainly with the manipulation of lattice dynamics to obtain extrinsic phonon transport routes, which can make the lattice thermal conductivity (κlat) intrinsically low by introducing multiple scattering mechanisms. The present study shows that the lattice-strain-induced phonon scattering resulting from microstructural distortions in GeTe-based compounds can enable ultralow lattice thermal conductivity. The unusual lattice shrinkage, W interstitials, W nanoprecipitates, and heavy elemental mass, in Ge0.85Sb0.1W0.05Te culminate in an ultralow lattice thermal conductivity of ∼0.2 W m−1 K−1 at 825 K. Microstructural distortions in this Sb/W co-doped GeTe are found to be primarily associated with shorter W–Te bonding owing to the anomalous effect of the higher electronegativity of the W atoms. Furthermore, the increased electrical conductivity (σ) resulting from the enhanced vacancy formation caused by W doping and W interstitials synergistically contributes to optimization of the thermoelectric performance (ZT) to ∼2.93 at 825 K. The thermoelectric efficiency (η) as high as ∼17% has been obtained for a single leg in this composition at an operating temperature of 825 K, with an estimated device ZT value of ∼1.38.
Ho, T-T, Yang Z-L, Fu F-Y, Jokar E, Hsu H-C, Liu P-C, Quadir S, Cheng-YingChen, Chiu Y-P, Wu C-I, Chen K-H, Chen L-C.
2022.
Modulation and Direct Mapping of the Interfacial Band Alignment of an Eco-Friendly Zinc-Tin-Oxide Buffer Layer in SnS Solar Cells, 2022. ACS Applied Energy MaterialsACS Applied Energy Materials. 5(11):14531-14540.: American Chemical Society
Abstractn/a
Fu, F-Y, Fan C-C, Qorbani M, Huang C-Y, Kuo P-C, Hwang J-S, Shu G-J, Chang S-M, Wu H-L, Wu C-I, Chen K-H, Chen L-C.
2022.
Selective CO2-to-CO photoreduction over an orthophosphate semiconductor via the direct Z-scheme heterojunction of Ag3PO4 quantum dots decorated on SnS2 nanosheets, 2022. Sustainable Energy & Fuels. 6(19):4418-4428.: The Royal Society of Chemistry
AbstractDirect Z-scheme heterojunctions are widely used for photocatalytic water splitting and CO2 reduction due to facilitating well-separated photogenerated charge carriers and spatial isolation of redox reactions. Here, using a facile two-step hydrothermal and ion-exchange method, we uniformly decorate silver orthophosphate (i.e., Ag3PO4) quantum dots with an average characteristic size of ∼10 nm over tin(iv) sulphide (i.e., SnS2) nanosheets to form a 0D/2D heterojunction. The direct Z-scheme mechanism, i.e. charge transport for efficient electron (from SnS2) and hole (from Ag3PO4) recombination, is confirmed by the following experiments: (i) ultraviolet and X-ray photoelectron spectroscopies; (ii) photodeposition of Pt and PbO2 nanoparticles on reduction and oxidation sites, respectively; (iii) in situ X-ray photoelectron spectroscopy; and (iv) electron paramagnetic resonance spectroscopy. Owing to the photoreduction properties of Ag3PO4 with orthophosphate vacancies, Z-scheme charge carrier transfer, and efficient exciton dissociation, an optimized heterojunction shows a high CO2-to-CO reduction yield of 18.3 μmol g−1 h−1 with an illustrious selectivity of ∼95% under light illumination, which is about 3.0 and 47.8 times larger than that of Ag3PO4 and SnS2, respectively. The carbon source for the CO product is verified using a 13CO2 isotopic experiment. Moreover, by tracing the peak at ∼1190 cm−1 in the dark and under light irradiation, in situ diffuse reflectance infrared Fourier transform spectroscopy demonstrates that the CO2 reduction pathway goes through the COOH* intermediate.
Fathabadi, M, Qorbani M, Sabbah A, Quadir S, Huang C-Y, Chen KH, Chen L-C, Naseri N.
2022.
Ultrathin amorphous defective co-doped hematite passivation layer derived via in-situ electrochemical method for durable photoelectrochemical water oxidation, 2022. Journal of Materials Chemistry A. :-.: The Royal Society of Chemistry
AbstractAlthough hematite (i.e., α-Fe2O3) has been widely investigated in photoelectrochemical water oxidation studies due to its high theoretical photocurrent density, it still suffers from serious surface charge recombination and low photoelectrochemical stability. Here we report an in-situ electrochemical method to form a uniform and ultrathin (i.e., 3–5 nm) passivation layer all over the porosities of the optimized ~3.2% Ti-doped α-Fe2O3 photoanode. We unveil the amorphous and defective nature of the in-situ derived layer assigning to a high concentration of oxygen vacancy and intercalated potassium atoms there, i.e., the formation of Ti/K co-doped defective α-Fe2O3-x. Owing to the efficient passivation of surface states, alleviated surface-potential fluctuations, and low charge-transfer resistance at the interface, photoanodes show an average of ~60% enhancement in the photoelectrochemical performance, applied bias absorbed photon-to-current efficiency of 0.43%, and Faradaic efficiency of ~88%. Moreover, the passivation layer prevents direct contact between the electrode material and electrolyte, resulting in less degradation and outstanding photoelectrochemical stability with photocurrent retention of ~95% after ~100 hours, albeit by performing several successive in-situ electrochemical passivation processes. This work presents an industrially scalable method to controllably engineer the interfaces of semiconductors–electrolytes with precious metal-free defective hematite-based co-catalysts for sustainable photoelectrochemical solar-to-fuel conversion applications.
Syum, Z, Billo T, Sabbah A, Venugopal B, Yu S-Y, Fu F-Y, Wu H-L, Chen L-C, Chen K-H.
2021.
Copper Zinc Tin Sulfide Anode Materials for Lithium-Ion Batteries at Low Temperature, 2021. ACS Sustainable Chemistry & EngineeringACS Sustainable Chemistry & Engineering. : American Chemical Society
Abstractn/a
Fu, F-Y, Shown I, Li C-S, Raghunath P, Lin T-Y, Billo T, Wu H-L, Wu C-I, Chung P-W, Lin M-C, Chen L-C, Chen K-H.
2019.
KSCN-induced Interfacial Dipole in Black TiO2 for Enhanced Photocatalytic CO2 Reduction, 2019. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces. 11(28):25186-25194.: American Chemical Society
Abstractn/a
Shown, I, Samireddi S, Chang Y-C, Putikam R, Chang P-H, Sabbah A, Fu F-Y, Chen W-F, Wu C-I, Yu T-Y, Chung P-W, Lin MC, Chen L-C, Chen K-H.
2018.
Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light, 2018. Nature Communications. 9(1):169.
AbstractPhotocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an l-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS2 (SnS2-C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS2 lattice, resulting in different photophysical properties as compared with undoped SnS2. This SnS2-C photocatalyst significantly enhances the CO2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS2-C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO2 reduction under visible light, where the in situ carbon-doped SnS2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.
Billo, T, Fu F-Y, Raghunath P, Shown I, Chen W-F, Lien H-T, Shen T-H, Lee J-F, Chan T-S, Huang K-Y, Wu C-I, Lin MC, Hwang J-S, Lee C-H, Chen L-C, Chen K-H.
2018.
Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction. Small. 14:1702928–n/a., Number 2
AbstractOne of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. In this contribution, a combined experimental and computational study on Ni-nanocluster loaded black TiO2 (Ni/TiO2[Vo]) with built-in dual active sites for selective photocatalytic CO2 conversion is reported. The findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO2 binding sites with the lowest activation energy (0.08 eV), (2) highly reactive sites, (3) a fast electron transfer pathway, and (4) enhanced light harvesting by lowering the bandgap. The Ni/TiO2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO2 (P-25). An insight into the mechanisms of interfacial charge transfer and product formation is explored.
Fang, S-L, Chou T-chin, Samireddi S, Chen K-H, Chen L-C, Chen W-F.
2017.
Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide, 2017/03/01. Royal Society open science. 4(3):161016161016-161016.: The Royal Society Publishing
AbstractProduction of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In this study, we synthesize and study a series of catalysts based on hybrids of CoP and MoP with different Co/Mo ratio. The HER activity shows a volcano shape and reaches a maximum for Co/Mo = 1. Tafel analysis indicates a change in the dominating step of Volmer-Hyrovský mechanism. Interestingly, X-ray diffraction patterns confirmed a major ternary interstitial hexagonal CoMoP(2) crystal phase is formed which enhances the electrochemical activity.
Lee, C-P, Chen W-F, Billo T, Lin Y-G, Fu F-Y, Samireddi S, Lee C-H, Hwang J-S, Chen K-H, Chen L-C.
2016.
Beaded stream-like CoSe2 nanoneedle array for efficient hydrogen evolution electrocatalysis, 2016. Journal of Materials Chemistry A. 4(12):4553-4561.: The Royal Society of Chemistry
AbstractThe development of earth-abundant and efficient electrocatalysts for the hydrogen evolution reaction (HER) is one of the keys to success for future green energy systems using hydrogen fuel. Nanostructuring of electrocatalysts is a promising way to enhance their electrocatalytic performance in the HER. In this study, pure pyrite-type beaded stream-like cobalt diselenide (CoSe2) nanoneedles are directly formed on flexible titanium foils through treating a cobalt oxide (Co3O4) nanoneedle array template with selenium vapor. The beaded stream-like CoSe2 nanoneedle electrode can drive the HER at a current density of 20 mA cm−2 with a small overpotential of 125 mV. Moreover, the beaded stream-like CoSe2 nanoneedle electrode remains stable in an acidic electrolyte for 3000 cycles and continuously splits water over a period of 18 hours. The enhanced electrochemical activity is facilitated by the unique three-dimensional hierarchical structure, the highly accessible surface active sites, the improved charge transfer kinetics and the highly attractive force between water and the surface of the nanoneedles that exceeds the surface tension of water.
Lee, CP, Chen* WF, Billo T, Lin YG, Fu FY, Samireddi S, Lee CH, Hwang JS, Chen* LC, Chen* KH.
2016.
Beaded-stream-like CoSe2 nanoneedles array for efficient hydrogen evolution electrocatalysis. J. Mater. Chem. A . 4 :4553-4561.
Chien, CT, Li SS, Lai WJ, Yeh YC, Chen HA, Chen LC, Chen KH, T.Nemoto, Isoda S, Chen M, Fujita T, Chhowalla M, Chen CW.
2012.
Tunable photoluminescence from graphene oxide. Angewandte Chemie. 51:6662-6666.
Hwang, JS, Kao MC, Shiu JM, Fan CN, Ye SC, Yu WS, Lin TY, Chattopadhyay S, Chen LC, Chen KH.
2011.
Photocurrent mapping in high efficiency radial p-n junction silicon nanowire solar cells using atomic force microscopy. J. Phys. Chem. C. 115:21981-21986.
Hsiao, CL, Chen JT, Hsu HC, Liao YC, Tseng PH, Chen YT, Feng ZC, Tu LW, Chou MC, Chen LC, Chen KH.
2010.
Heteroepitaxy of m-plane (1010) InN on (100)-LiAlO2 substrates and its strong anisotropic optical behaviors. ,J. Appl. Phys.. 107:073502.