Kamal Hussien, M, Sabbah A, Qorbani M, Hammad Elsayed M, Raghunath P, Lin T-Y, Quadir S, Wang H-Y, Wu H-L, Tzou D-LM, Lin M-C, Chung P-W, Chou H-H, Chen L-C, Chen K-H.
2021.
Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution, 2021. Chemical Engineering Journal. :132853.
AbstractUtilization of g-C3N4 as a single photocatalyst material without combination with other semiconductor remains challenging. Herein, we report a facile green method for synthesizing a metal free modified g-C3N4 photocatalyst. The modification process combines four different strategies in a one-pot thermal reaction: non-metal doping, porosity generation, functionalization with amino groups, and thermal oxidation etching. The as-prepared amino-functionalized ultrathin nanoporous boron-doped g-C3N4 exhibited a high specific surface area of 143.2 m2 g−1 which resulted in abundant adsorption sites for CO2 and water molecules. The surface amino groups act as Lewis basic sites to adsorb acidic CO2 molecules, which can also serve as active sites to facilitate hydrogen generation. Besides, the simultaneous use of ammonium chloride as a dynamic gas bubble template along with thermal oxidation etching efficiently boosts the delamination of the g-C3N4 layers to produce ultrathin sheets; this leads to stronger light–matter interactions and efficient charge generation. Consequently, the newly modified g-C3N4 achieved selective gas-phase CO2 reduction into CO with a production yield of 21.95 µmol g-1, in the absence of any cocatalyst. Moreover, a high hydrogen generation rate of 3800 µmol g-1 h-1 and prominent apparent quantum yield of 10.6% were recorded. This work opens up a new avenue to explore different rational modifications of g-C3N4 nanosheets for the efficient production of clean energy.
Venugopal, B, Shown I, Samireddi S, Syum Z, Krishnamoorthy V, Wu H-L, Chu C-W, Lee C-H, Chen L-C, Chen K-H.
2021.
Microstructural intra-granular cracking in Cu2ZnSnS4@C thin-film anode enhanced the electrochemical performance in lithium-ion battery applications, 2021. Materials Advances. 2(17):5672-5685.: RSC
AbstractCu2ZnSnS4 (CZTS) has demonstrated excellent performance as an anode material for lithium-ion batteries. However, the repeated lithiation and delithiation create a cracking pattern and lead to island formation in the thin-film electrode, resulting in a capacity fading over cycling in lithium-ion batteries (LIB's). In order to control this crack behaviour, we introduce carbon into CZTS thin-films by a hydrothermal method to form CZTS@C composite. CZTS@C significantly reduced the crack pattern formation on the electrode surface as well as improved the conductivity of the CZTS@C electrode. At the early stages of lithiation and delithiation, the volume expansion and contraction of Li–CZTS@C create intra-granular cracking only at the surface level, and it offers a high capacity of about 785 mA h g−1 after 150 cycles at 1000 mA g−1 charging rate, excellent rate capability (942 mA h g−1, 678 mA h g−1 and 435 mA h g−1 at 500 mA g−1, 2000 mA g−1 and 5000 mA g−1), and superior cyclability (925 mA h g−1 even after 200 cycles at 500 mA g−1). The excellent electrochemical performance at high-current rates can be attributed to intra-granular cracking together with carbon coating that provides a short transportation length for both lithium ions and electrons. Moreover, the controlled cracking pattern formation in CZTS@C facilitates faster reaction kinetics, which open up a new solution for the development of high-power thin-film anodes for next-generation LIBs applications.
Lee, S-W, Abdi ZG, Chen J-C, Chen K-H.
2021.
Optimal method for preparing sulfonated polyaryletherketones with high ion exchange capacity by acid-catalyzed crosslinking for proton exchange membrane fuel cells, 2021. Journal of Polymer ScienceJournal of Polymer Science. 59(8):706-720.: John Wiley & Sons, Ltd
AbstractAbstract Sulfonated polyaryletherketones (SPAEK) bearing four sulfonic acid groups on the phenyl side groups were synthesized. The benzophenone moiety of polymer backbone was further reduced to benzydrol group with sodium borohydride. The membranes were crosslinked by acid-catalyzed Friedel-Crafts reaction without sacrifice of sulfonic acid groups and ion exchange capacity (IEC) values. Crosslinked membranes with the same IEC value but different water uptake could be prepared. The optimal crosslinking condition was investigated to achieve lower water uptake, better chemical stability (Fenton's test), and higher proton conductivity. In addition, the hydrophilic ionic channels from originally course and disordered could be modified to be narrow and continuous by this crosslinking method. The crosslinked membranes, CS4PH-40-PEKOH (IEC = 2.4 meq./g), reduced water uptake from 200 to 88% and the weight loss was reduced from 11 to 5% during the Fenton test compared to uncrosslinked one (S4PH-40-PEK). The membrane showed comparable proton conductivity (0.01?0.19?S/cm) to Nafion 212 at 80°C from low to high relative humidity (RH). Single H2/O2 fuel cell based on the crosslinked SPAEK with catalyst loading of 0.25?mg/cm2 (Pd/C) exhibited a peak power density of 220.3 mW/cm2, which was close to that of Nafion 212 (214.0 mW/cm2) at 80°C under 53% RH. These membranes provide a good option as proton exchange membrane with high ion exchange capacity for fuel cells.
Lien, H-T, Chang Y-C, Huang C-Y, Hsu H-C, Chang S-T, Wong DP, Wang C-H, Wang C-H, Chen K-H, Chen L-C.
2021.
Solar to hydrocarbon production using metal-free water-soluble bulk heterojunction of conducting polymer nanoparticle and graphene oxide, 2021. The Journal of Chemical PhysicsThe Journal of Chemical Physics. 154(16):164707.: American Institute of Physics
Abstractn/a
Syum, Z, Venugopal B, Sabbah A, Billo T, Chou T-chin, Wu H-L, Chen L-C, Chen K-H.
2021.
Superior lithium-ion storage performance of hierarchical tin disulfide and carbon nanotube-carbon cloth composites, 2021. Journal of Power Sources. 482:228923.
AbstractTin-based composites are promising anode materials for high-performance lithium-ion batteries (LIBs); however, insufficient conductivity, as well as fatal volume expansion during cycling lead to poor electrochemical reversibility and cycling stability. In this work, we demonstrate the lithium-ion storage behaviors of SnS2 anode material deposited on different electrode supports. The SnS2 grown on 3D hierarchical carbon nanotube-carbon cloth composites (SnS2-CNT-CC) shows superior capacity retention and cycle stability, compared to that on planar Mo sheets and carbon cloth. The specific capacity of SnS2 on Mo, CC, and CNT-CC is around 240, 840, and 1250 g−1, respectively. The SnS2-CNT-CC electrode outperforms in the cyclic performance and rate capability compared to other electrode configurations due to the multi-electron pathway and high surface area derived from 3D hierarchical CNT-CC electrode support. Furthermore, a significant decrease in the charge transfer resistance is observed by utilizing 3D hierarchical CNT-CC electrode support. The use of 3D hierarchical structures as electrode support could be the best alternative to enhance the electrochemical performances for the next generation LIBs.
Su, T-Y, Wang T-H, Wong DP, Wang Y-C, Huang A, Sheng Y-C, Tang S-Y, Chou T-chin, Chou T-L, Jeng H-T, Chen L-C, Chen K-H, Chueh Y-L.
2021.
Thermally Strain-Induced Band Gap Opening on Platinum Diselenide-Layered Films: A Promising Two-Dimensional Material with Excellent Thermoelectric Performance, 2021. Chemistry of MaterialsChemistry of Materials. 33(10):3490-3498.: American Chemical Society
Abstractn/a
Samireddi, S, Aishwarya V, Shown I, Muthusamy S, Unni SM, Wong K-T, Chen K-H, Chen L-C.
2021.
Synergistic Dual-Atom Molecular Catalyst Derived from Low-Temperature Pyrolyzed Heterobimetallic Macrocycle-N4 Corrole Complex for Oxygen Reduction. Small. 17:2103823., Number 46
AbstractAbstract A heterobimetallic corrole complex, comprising oxygen reduction reaction (ORR) active non-precious metals Co and Fe with a corrole-N4 center (PhFCC), is successfully synthesized and used to prepare a dual-atom molecular catalyst (DAMC) through subsequent low-temperature pyrolysis. This low-temperature pyrolyzed electrocatalyst exhibited impressive ORR performance, with onset potentials of 0.86 and 0.94 V, and half-wave potentials of 0.75 and 0.85 V, under acidic and basic conditions, respectively. During potential cycling, this DAMC displayed half-wave potential losses of only 25 and 5 mV under acidic and alkaline conditions after 3000 cycles, respectively, demonstrating its excellent stability. Single-cell Nafion-based proton exchange membrane fuel cell performance using this DAMC as the cathode catalyst showed a maximum power density of 225 mW cm−2, almost close to that of most metal–N4 macrocycle-based catalysts. The present study showed that preservation of the defined CoN4 structure along with the cocatalytic Fe–Cx site synergistically acted as a dual ORR active center to boost overall ORR performance. The development of DAMC from a heterobimetallic CoN4-macrocyclic system using low-temperature pyrolysis is also advantageous for practical applications.
Yang, J, Wang C-Y, Wang C-C, Chen K-H, Mou C-Y, Wu H-L.
2020.
Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes, 2020. Journal of Materials Chemistry A. 8(10):5095-5104.: The Royal Society of Chemistry
AbstractLithium metal anodes form a dendritic structure after cycling which causes an internal short circuit in flammable electrolytes and results in battery fires. Today's separators are insufficient for suppressing the formation of lithium dendrites. Herein, we report on the use of mesoporous silica thin films (MSTFs) with perpendicular nanochannels (pore size ∼5 nm) stacking on an anodic aluminum oxide (AAO) membrane as the MSTF⊥AAO separator for advancing Li metal batteries. The nanoporous MSTF⊥AAO separator with novel inorganic structures shows ultra-long term stability of Li plating/stripping in Li–Li cells at an ultra-high current density and capacity (10 mA cm−2 and 5 mA h cm−2). A significant improvement over the state-of-the-art separator is evaluated based on three performance indicators, e.g. cycle life, current density and capacity. In Li–Cu cells, the MSTF⊥AAO separator shows a coulombic efficiency of >99.9% at a current density of 10 mA cm−2 for more than 250 h of cycling. The separator gives improved rate capability in Li–LiFePO4 (LFP) batteries. The excellent performance of the MSTF⊥AAO separator is due to good wetting of electrolytes, straight nanopores with negative charges, uniform Li deposition and blocking the finest dendrite.
Shit, SC, Shown I, Paul R, Chen K-H, Mondal J, Chen L-C.
2020.
Integrated nano-architectured photocatalysts for photochemical CO2 reduction, 2020. Nanoscale. 12(46):23301-23332.: The Royal Society of Chemistry
AbstractRecent advances in nanotechnology, especially the development of integrated nanostructured materials, have offered unprecedented opportunities for photocatalytic CO2 reduction. Compared to bulk semiconductor photocatalysts, most of these nanostructured photocatalysts offer at least one advantage in areas such as photogenerated carrier kinetics, light absorption, and active surface area, supporting improved photochemical reaction efficiencies. In this review, we briefly cover the cutting-edge research activities in the area of integrated nanostructured catalysts for photochemical CO2 reduction, including aqueous and gas-phase reactions. Primarily explored are the basic principles of tailor-made nanostructured composite photocatalysts and how nanostructuring influences photochemical performance. Specifically, we summarize the recent developments related to integrated nanostructured materials for photocatalytic CO2 reduction, mainly in the following five categories: carbon-based nano-architectures, metal–organic frameworks, covalent-organic frameworks, conjugated porous polymers, and layered double hydroxide-based inorganic hybrids. Besides the technical aspects of nanostructure-enhanced catalytic performance in photochemical CO2 reduction, some future research trends and promising strategies are addressed.
Bayikadi, KS, Wu CT, Chen L-C, Chen K-H, Chou F-C, Sankar R.
2020.
Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries, 2020. Journal of Materials Chemistry A. 8(10):5332-5341.: The Royal Society of Chemistry
AbstractIn addition to the Ge-vacancy control of GeTe, the antimony (Sb) substitution of GeTe for the improvement of thermoelectric performance is explored for Ge1−xSbxTe with x = 0.08–0.12. The concomitant carrier concentration (n) and the aliovalent Sb ion substitution led to an optimal doping level of x = 0.10 to show ZT ∼ 2.35 near ∼800 K, which is significantly higher than those single- and multi-element substitution studies of the GeTe system reported in the literature. In addition, Ge0.9Sb0.1Te demonstrates an impressively high power factor of ∼36 μW cm−1 K−2 and a low thermal conductivity of ∼1.1 W m−1 K−1 at 800 K. The enhanced ZT level for Ge0.9Sb0.1Te is explained through a systematic investigation of micro-structural change and strain analysis from room temperature to 800 K. A significant reduction of lattice thermal conductivity (κlat) is identified and explained by the Sb substitution-introduced strained and widened domain boundaries for the herringbone domain structure of Ge0.9Sb0.1Te. The Sb substitution created multiple forms of strain near the defect centre, the herringbone domain structure, and widened tensile/compressive domain boundaries to support phonon scattering that covers a wide frequency range of the phonon spectrum to reduce lattice thermal conductivity effectively.
Sainbileg, B, Lai Y-R, Chen L-C, Hayashi M.
2019.
The dual-defective SnS2 monolayers: promising 2D photocatalysts for overall water splitting, 2019. Physical Chemistry Chemical Physics. 21(48):26292-26300.: The Royal Society of Chemistry
AbstractPhotocatalytic water splitting is a promising way to produce hydrogen fuel from solar energy. In this regard, the search for new photocatalytic materials that can efficiently split water into hydrogen is essential. Here, using first-principles simulations, we demonstrate that the dual-defective SnS2 (Ni-SnS2-VS), by both single-atom nickel doping and sulfur monovacancies, becomes a promising two-dimensional photocatalyst compared with SnS2. The Ni-SnS2-VS monolayer, in particular, exhibits a suitable band alignment that perfectly overcomes the redox potentials for overall water splitting. The dual-defective monolayer displays remarkable photocatalytic activity, a spatially separated carrier, a broadened optical absorption spectrum, and enhanced adsorption energy of H2O. Therefore, the dual-defective SnS2 monolayer can serve as an efficient photocatalyst for overall water splitting to produce hydrogen fuel. Furthermore, a novel dual-defect method can be an effective strategy to enhance the photocatalytic behavior of 2D materials; it may pave inroads in the development of solar-fuel generation.
Bayikadi, KS, Sankar R, Wu CT, Xia C, Chen Y, Chen L-C, Chen K-H, Chou F-C.
2019.
Enhanced thermoelectric performance of GeTe through in situ microdomain and Ge-vacancy control, 2019. Journal of Materials Chemistry A. 7(25):15181-15189.: The Royal Society of Chemistry
AbstractA highly reproducible sample preparation method for pure GeTe in a rhombohedral structure without converting to the cubic structure up to ∼500 °C is reported to show control of the Ge-vacancy level and the corresponding herringbone-structured microdomains. The thermoelectric figure-of-merit (ZT) for GeTe powder could be raised from ∼0.8 to 1.37 at high temperature (HT) near ∼500 °C by tuning the Ge-vacancy level through the applied reversible in situ route, which made it highly controllable and reproducible. The enhanced ZT of GeTe was found to be strongly correlated with both its significantly increased Seebeck coefficient (∼161 μV K−1 at 500 °C) and reduced thermal conductivity (∼2.62 W m−1 K−1 at 500 °C) for a sample with nearly vacancy-free thicker herringbone-structured microdomains in the suppressed rhombohedral-to-cubic structure phase transformation. The microdomain and crystal structures were identified with HR-TEM (high-resolution transmission electron microscopy) and powder X-ray diffraction (XRD), while electron probe micro-analysis (EPMA) was used to confirm the stoichiometry changes of Ge : Te. Theoretical calculations for GeTe with various Ge-vacancy levels suggested that the Fermi level shifts toward the valence band as a function of increasing the Ge-vacancy level, which is consistent with the increased hole-type carrier concentration (n) and effective mass (m*) deduced from the Hall measurements. The uniquely prepared sample of a near-vacancy-free GeTe in a rhombohedral structure at high temperature favoured an enhanced Seebeck coefficient in view of the converging L- and Σ-bands of the heavy effective mass at the Fermi level, while the high density domain boundaries for the domain of low carrier density were shown to reduce the total thermal conductivity effectively.
Chang, H-C, You H-J, Sankar R, Yang Y-J, Chen L-C, Chen K-H.
2019.
Enhanced Thermoelectric Performance via Oxygen Manipulation in BiCuTeO, 2019. MRS Advances. 4(8):499-505.: Materials Research Society
AbstractBiCuTeO is a potential thermoelectric material owing to its low thermal conductivity and high carrier concentration. However, the thermoelectric performance of BiCuTeO is still below average and has much scope for improvement. In this study, we manipulated the nominal oxygen content in BiCuTeO and synthesized BiCuTeOx (x = 0.94–1.06) bulks by a solid-state reaction and pelletized them by a cold-press method. The power factor was enhanced by varying the nominal oxygen deficiency due to the increased Seebeck coefficient. The thermal conductivity was also reduced due to the decrease in lattice thermal conductivity owing to the small grain size generated by the optimal nominal oxygen content. Consequently, the ZT value was enhanced by ∼11% at 523 K for stoichiometric BiCuTeO0.94 compared to BiCuTeO. Thus, optimal oxygen manipulation in BiCuTeO can enhance the thermoelectric performance. This study can be applied to developing oxides with high thermoelectric performances.
Sabhapathy, P, Liao C-C, Chen W-F, Chou T-chin, Shown I, Sabbah A, Lin Y-G, Lee J-F, Tsai M-K, Chen K-H, Chen L-C.
2019.
Highly efficient nitrogen and carbon coordinated N–Co–C electrocatalysts on reduced graphene oxide derived from vitamin-B12 for the hydrogen evolution reaction, 2019. Journal of Materials Chemistry A. 7(12):7179-7185.: The Royal Society of Chemistry
AbstractExploring electrocatalysts composed of earth-abundant elements for a highly efficient hydrogen evolution reaction (HER) is scientifically and technologically important for electrocatalytic water splitting. In this work, we report HER properties of acid treated pyrolyzed vitamin B12 supported on reduced graphene oxide (B12/G800A) that shows an extraordinarily enhanced catalytic activity with low overpotential (115 mV vs. RHE at 10 mA cm−2), which is better than that of most traditional nonprecious metal catalysts in acidic media. Stability tests through long-term potential cycles and at a constant current density confirm the exceptional durability of the catalyst. Notably, the B12/G800A catalyst exhibits extremely high turnover frequencies per cobalt site in acid, for example, 0.85 and 11.46 s−1 at overpotentials of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Moreover, it has been conjectured that the covalency of Co–C and Co–N bonds affects HER activities by comparing the extended X-ray absorption fine structure (EXAFS) spectra of the B12/G800A. High-temperature treatment can modify the Co-corrin structure of B12 to form Co–C bonds along with Co–N, which broadens the band of cobalt, essentially lowering the d-band center from its Fermi level. The lower d-band center leads to a moderate hydrogen binding energy, which is favorable for hydrogen adsorption and desorption.